Genau so ist es. Im SNN-Pulsneuronenbuch wird das ziemlich genau heraus gearbeitet. Dort werden ein paar Neuronen im FPGA implementiert um zu sehen, wie viele Logikblöcke sie brauchen. Allerdings merkt man bald, dass FPGAs ( obwohl sehr flexibel und schnell ) doch strukturelle Einschränkungen haben. Deshalb beschäftigt sich die Arbeit auch mehr mit verschiedenen Analogschaltungen, welche die Neuronen nachbilden.die Nerven in der Natur arbeiten simultan und ihre Dendriten können wachsen und verkümmern.
Parallelität geht mit CPLD/FPGA - aber nur ganz wenig. Und Dendriten-Wachstum können CPUs mühsam mit ihren GPU-Matrizenmultiplikationen simulieren. Leider gibts noch keine FPGA-GPUs, so dass die Lösung beider Probleme auf einen Schlag gelingt.
Soweit OK, aberDie Struktur unserer Chips passt einfach nicht richtig zur Natur.
Das wiederum sieht man anders, wenn man das SNN-Pulsneuronenbuch gelesen hat. Die Neuronen selbst sind ja nicht die Verkabelung.Daran können auch die Pulsneuronen nicht wirklich was verbessern, denn sie verbessern nicht die beiden großen Einschränkungen.
Das wiederum ist richtig. Es gibt ziemlich intensive Forschungsanstrengungen von IBM und Intel zu Struktur neuer Chips, die ebenfalls im SNN-Pulsneuronenbuch beschrieben werden.Entweder man konstruiert Chips, die die Hirne besser nachbilden können oder man erschafft sich ein gänzlich neuartiges Verarbeitungsmodell. Wendet sich also ab von der Nachahmung der Natur und hin zu einer Darstellung, die besser zu den vorhandenen Chips passt.
Lesezeichen