Code:
// Brickbench
// benchmark test for SoCs and MCUs
// PL: GCC,Arduino
// (C) 2013-2019
//
// freie Verwendung für private Zwecke
// für kommerzielle Zwecke nur nach schriftlicher Genehmigung durch den Autor.
// protected under the friendly Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
// http://creativecommons.org/licenses/by-nc-sa/3.0/
// version 2.2 (2019-04-15)
// Adafruit ILI9341
// change log:
// 2.2. testing both 32fp and 64fp
// 2.1.1. 32bit fp tests vs. 64bit double (ARM/32bit cores, optional)
// low-level bitRead/Write vs. digitalRead/Write (AVR cores, optional)
// 2.1 GPIO r/w
// 2.0 loop counts
#include "SPI.h"
#include "Adafruit_GFX.h"
#include "Adafruit_ILI9341.h"
// Arduino TFT pins
#define tft_cs 10
#define tft_dc 9
#define tft_rst 8
//Adafruit_ILI9341 tft = Adafruit_ILI9341(tft_cs, tft_dc, tft_rst);
// Adafruit Hardware SPI, no RST
Adafruit_ILI9341 tft = Adafruit_ILI9341(tft_cs, tft_dc);
Adafruit_HX8357 tft = Adafruit_HX8357(TFT_CS, TFT_DC, TFT_RST);
Adafruit_STMPE610 ts = Adafruit_STMPE610(STMPE_CS);
#define TimerMS() millis()
unsigned long runtime[10];
#define tpin1 11 // GPIO test pins digitalWrite
#define tpin2 12 // GPIO test pins digitalWrite
#define tpin3 13 // GPIO test pins digitalRead
void TFTprint(char sbuf[], int16_t x, int16_t y) {
tft.setCursor(x, y);
tft.print(sbuf);
}
int a[500], b[500], c[500], t[500];
//--------------------------------------------
// Mersenne Twister
//--------------------------------------------
unsigned long randM(void) {
const int M = 7;
const unsigned long A[2] = { 0, 0x8ebfd028 };
static unsigned long y[25];
static int index = 25+1;
if (index >= 25) {
int k;
if (index > 25) {
unsigned long r = 9, s = 3402;
for (k=0 ; k<25 ; ++k) {
r = 509845221 * r + 3;
s *= s + 1;
y[k] = s + (r >> 10);
}
}
for (k=0 ; k<25-M ; ++k)
y[k] = y[k+M] ^ (y[k] >> 1) ^ A[y[k] & 1];
for (; k<25 ; ++k)
y[k] = y[k+(M-25)] ^ (y[k] >> 1) ^ A[y[k] & 1];
index = 0;
}
unsigned long e = y[index++];
e ^= (e << 7) & 0x2b5b2500;
e ^= (e << 15) & 0xdb8b0000;
e ^= (e >> 16);
return e;
}
//--------------------------------------------
// Matrix Algebra
//--------------------------------------------
// matrix * matrix multiplication (matrix product)
void MatrixMatrixMult(int N, int M, int K, double *A, double *B, double *C) {
int i, j, s;
for (i = 0; i < N; ++i) {
for (j = 0; j < K; ++j) {
C[i*K+j] = 0;
for (s = 0; s < M; ++s) {
C[i*K+j] = C[i*K+j] + A[i*N+s] * B[s*M+j];
}
}
}
}
// matrix determinant
double MatrixDet(int N, double A[]) {
int i, j, i_count, j_count, count = 0;
double Asub[N - 1][N - 1], det = 0;
if (N == 1)
return *A;
if (N == 2)
return ((*A) * (*(A+1+1*N)) - (*(A+1*N)) * (*(A+1)));
for (count = 0; count < N; count++) {
i_count = 0;
for (i = 1; i < N; i++) {
j_count = 0;
for (j = 0; j < N; j++) {
if (j == count)
continue;
Asub[i_count][j_count] = *(A+i+j*N);
j_count++;
}
i_count++;
}
det += pow(-1, count) * A[0+count*N] * MatrixDet(N - 1, &Asub[0][0]);
}
return det;
}
//--------------------------------------------
// shell sort
//--------------------------------------------
void shellsort(int size, int* A)
{
int i, j, increment;
int temp;
increment = size / 2;
while (increment > 0) {
for (i = increment; i < size; i++) {
j = i;
temp = A[i];
while ((j >= increment) && (A[j-increment] > temp)) {
A[j] = A[j - increment];
j = j - increment;
}
A[j] = temp;
}
if (increment == 2)
increment = 1;
else
increment = (unsigned int) (increment / 2.2);
}
}
//--------------------------------------------
// gnu quick sort
// (0ptional)
//--------------------------------------------
int compare_int (const int *a, const int *b)
{
int temp = *a - *b;
if (temp > 0) return 1;
else if (temp < 0) return -1;
else return 0;
}
// gnu qsort:
// void qsort (void *a , size_a count, size_a size, compare_function)
// gnu qsort call for a[500] array of int:
// qsort (a , 500, sizeof(a), compare_int)
//--------------------------------------------
// benchmark test procedures
//--------------------------------------------
int test_Int_Add() { // 10,000,000 int +,-
int i=1, j=11, k=112, l=1111, m=11111, n=-1, o=-11, p=-111, q=-1112, r=-11111;
unsigned long x;
volatile long s=0;
for(x=0;x<5000000;x++) {
s+=i; s+=j; s+=k; s+=l; s+=m; s+=n; s+=o; s+=p; s+=q; s+=r;
}
return s; // debug
}
//--------------------------------------------
long test_Int_Mult() { // 2,000,000 int *,/
int x;
unsigned long y;
volatile long s;
for(y=0;y<500000;y++) {
s=1;
for(x=1;x<=10;x++) { s*=x;}
for(x=10;x>0;--x) { s/=x;}
}
return s; // debug
}
#define PI M_PI
//--------------------------------------------
double test_fp64_math() { // 2,500,000 fp (double) mult, transcend.
volatile double s=(double)PI;
unsigned long y;
for(y=0;y<500000UL;y++) {
s*=sqrt(s);
s=sin(s);
s=exp(s);
s*=s;
}
return s;
}
//--------------------------------------------
float test_fp32_math() { // 2,500,000 32bit float mult, transcend.
volatile float s=(float)PI;
unsigned long y;
for(y=0;y<500000UL;y++) {
s*=sqrtf(s);
s=sinf(s);
s=expf(s);
s*=s;
}
return s;
}
//--------------------------------------------
long test_rand_MT() { // 2,500,000 PRNGs
volatile unsigned long s;
unsigned long y;
for(y=0;y<2500000;y++) {
s=randM()%10001;
}
return s;
}
//--------------------------------------------
double test_matrix_math() { // 150,000 2D Matrix algebra (mult, det)
unsigned long x;
double A[2][2], B[2][2], C[2][2];
double S[3][3], T[3][3];
unsigned long s;
for(x=0;x<50000;++x) {
A[0][0]=1; A[0][1]=3;
A[1][0]=2; A[1][1]=4;
B[0][0]=10; B[0][1]=30;
B[1][0]=20; B[1][1]=40;
MatrixMatrixMult(2, 2, 2, A[0], B[0], C[0]);
A[0][0]=1; A[0][1]=3;
A[1][0]=2; A[1][1]=4;
MatrixDet(2, A[0]);
S[0][0]=1; S[0][1]=4; S[0][2]=7;
S[1][0]=2; S[1][1]=5; S[1][2]=8;
S[2][0]=3; S[2][1]=6; S[2][2]=9;
MatrixDet(3, S[0]);
s=(S[0][0]*S[1][1]*S[2][2]);
}
return s;
}
//--------------------------------------------
// for array copy using void *memcpy(void *dest, const void *src, size_t n);
long test_Sort() { // 1500 sort of random array[500]
unsigned long s;
int y, i;
int t[500];
for(y=0;y<500;++y) {
memcpy(t, a, sizeof(a));
shellsort(500, t);
memcpy(t, a, sizeof(b));
shellsort(500, t);
memcpy(t, a, sizeof(c));
shellsort(500, t);
}
return y;
}
//--------------------------------------------
int32_t test_GPIO() { // 6,000,000 GPIO r/w
volatile static bool w=false, r;
uint32_t y;
for (y=0; y<2000000; y++) {
digitalWrite(tpin1, w);
w=!w;
r=digitalRead(tpin3);
digitalWrite(tpin2, w&!r);
}
return 1;
}
/*
//--------------------------------------------
int32_t test_GPIO_AVR() { // 6,000,000 GPIO bit r/w
volatile static bool w=false, r;
uint32_t y;
for (y=0; y<2000000; y++) {
bitWrite(PORTB, PB5, w);
w=!w;
r = bitRead(PINB, PB7);
bitWrite(PORTB, PB6, w&!r); // optional: bitWrite(PORTB, PB6, w&r);
}
return 1; // debug
}
*/
//--------------------------------------------
inline void displayValues() {
char buf[120];
tft.fillScreen(0x0000); // clrscr()
sprintf (buf, "%3d %9ld int_Add", 0, runtime[0]); TFTprint(buf, 0, 9);
sprintf (buf, "%3d %9ld int_Mult", 1, runtime[1]); TFTprint(buf, 0,18);
sprintf (buf, "%3d %9ld fp32_op", 2, runtime[2]); TFTprint(buf, 0,27);
sprintf (buf, "%3d %9ld fp64_op", 3, runtime[3]); TFTprint(buf, 0,36);
sprintf (buf, "%3d %9ld randomize", 4, runtime[4]); TFTprint(buf, 0,45);
sprintf (buf, "%3d %9ld matrx_algb", 5, runtime[5]); TFTprint(buf, 0,54);
sprintf (buf, "%3d %9ld arr_sort", 6, runtime[6]); TFTprint(buf, 0,63);
sprintf (buf, "%3d %9ld GPIO_togg", 7, runtime[7]); TFTprint(buf, 0,72);
sprintf (buf, "%3d %9ld Graphics", 8, runtime[8]); TFTprint(buf, 0,80);
}
//--------------------------------------------
int32_t test_TextOut(){
int y;
char buf[120];
for(y=0;y<10;++y) {
tft.fillScreen(0x0000); // clrscr()
sprintf (buf, "%3d %9d int_Add", y, 1000); TFTprint(buf, 0, 9);
sprintf (buf, "%3d %9d int_Mult", 0, 1010); TFTprint(buf, 0,18);
sprintf (buf, "%3d %9d fp32_op", 0, 1032); TFTprint(buf, 0,27);
sprintf (buf, "%3d %9d fp64_op", 0, 1064); TFTprint(buf, 0,36);
sprintf (buf, "%3d %9d randomize", 0, 1040); TFTprint(buf, 0,45);
sprintf (buf, "%3d %9d matrx_algb", 0, 1050); TFTprint(buf, 0,54);
sprintf (buf, "%3d %9d GPIO_togg", 0, 1060); TFTprint(buf, 0,63);
sprintf (buf, "%3d %9d Graphics", 0, 1070); TFTprint(buf, 0,72);
sprintf (buf, "%3d %9d testing...", 0, 1080); TFTprint(buf, 0,80);
}
return y;
}
//--------------------------------------------
int32_t test_graphics(){
int y;
char buf[120];
for(y=0;y<10;++y) {
tft.fillScreen(0x0000);
sprintf (buf, "%3d", y); TFTprint(buf, 0,80); // outcomment for downwards compatibility
tft.drawCircle(50, 40, 10, 0xFFFF);
tft.fillCircle(30, 24, 10, 0xFFFF);
tft.drawLine(10, 10, 60, 60, 0xFFFF);
tft.drawLine(50, 20, 90, 70, 0xFFFF);
tft.drawRect(20, 20, 40, 40, 0xFFFF);
tft.fillRect(65, 25, 20, 30, 0xFFFF);
tft.drawCircle(70, 30, 15, 0xFFFF);
}
return y;
}
//--------------------------------------------
long test(){
unsigned long time0, x, y;
double s;
char buf[120];
int i;
float f;
Serial.println("init test arrays");
for(y=0;y<500;++y) {
a[y]=randM()%30000; b[y]=randM()%30000; c[y]=randM()%30000;
}
Serial.println("start test");
tft.println("start test");
delay(10);
time0= TimerMS();
s=test_Int_Add();
runtime[0]=TimerMS()-time0;
sprintf (buf, "%3d %9ld int_Add", 0, runtime[0]);
Serial.println( buf);
tft.println( buf);
time0=TimerMS();
s=test_Int_Mult();
runtime[1]=TimerMS()-time0;
sprintf (buf, "%3d %9ld int_Mult", 1, runtime[1]);
Serial.println( buf);
tft.println( buf);
time0=TimerMS();
s=test_fp32_math();
runtime[2]=TimerMS()-time0;
sprintf (buf, "%3d %9ld fp32_ops", 2, runtime[2]);
Serial.println( buf);
tft.println( buf);
//debug // Serial.println(s);
time0=TimerMS();
s=test_fp64_math();
runtime[3]=TimerMS()-time0;
sprintf (buf, "%3d %9ld fp64_ops", 3, runtime[3]);
Serial.println( buf);
tft.println( buf);
//debug // Serial.println(s);
time0=TimerMS();
s=test_rand_MT();
runtime[4]=TimerMS()-time0;
sprintf (buf, "%3d %9ld randomize", 4, runtime[4]);
Serial.println( buf);
tft.println( buf);
time0=TimerMS();
s=test_matrix_math();
runtime[5]=TimerMS()-time0;
sprintf (buf, "%3d %9ld matrx_algb", 5, runtime[5]);
Serial.println( buf);
tft.println( buf);
time0=TimerMS();
s=test_Sort();
runtime[6]=TimerMS()-time0;
sprintf (buf, "%3d %9ld arr_sort", 6, runtime[6]);
Serial.println( buf);
tft.println( buf);
// GPIO R/W toggle test
//Serial.println("GPIO_toggle test");
time0=TimerMS();
s=test_GPIO();
runtime[7]=TimerMS()-time0;
sprintf (buf, "%3d %9ld GPIO_toggle", 7, runtime[7]);
Serial.println( buf);
tft.println( buf);
// lcd display text / graphs
time0=TimerMS();
s=test_TextOut();
s=test_graphics();
runtime[8]=TimerMS()-time0;
sprintf (buf, "%3d %9ld Graphics ", 8, runtime[8]);
Serial.println( buf);
tft.println( buf);
Serial.println();
y = 0;
for (x = 0; x < 9; ++x) {
y += runtime[x];
}
displayValues();
sprintf (buf, "runtime ges.: %-9ld ", y);
Serial.println( buf); TFTprint(buf, 0,90);
x=50000000.0/y;
sprintf (buf, "benchmark: %-9ld ", x);
Serial.println( buf); TFTprint(buf, 0,100);
return 1;
}
//--------------------------------------------
void setup() {
Serial.begin(115200);
Serial.println("starting Serial()");
while(!Serial);
// Setup the LCD
tft.begin();
tft.setRotation(3);
tft.fillScreen(0x0000);
tft.setTextColor(0xFFFF); tft.setTextSize(1);
Serial.println("tft started");
pinMode(tpin1, OUTPUT);
pinMode(tpin2, OUTPUT);
pinMode(tpin3, INPUT_PULLUP);
char buf[120];
test();
sprintf (buf, "Ende HaWe brickbench");
Serial.println( buf);
TFTprint(buf, 0, 110);
}
void loop() {
}
/*
*/
Lesezeichen