ja, das ist eine Gesetzmäßigkeit bei normalverteilten Stichproben (="Messungen"),
und nein, es ist eben hier KEINE min-max-Grenze,
und nein, es gibt dann auch keine "32% falschen Werte":
ca. 68% liegen im +/- 1*sigma-Bereich,
ca. 95,5% im +/- 2*sigma-Bereich
ca. 99,7% im 3*sigma-Bereich
ca. 99,9999% im 4*sigma-Bereich
das sind alles keine Falschmessungen, sondern nur statistisch normal-verteilte Messungen, die dann regelmäßig mit ihren relativen Häufigkeiten IMMER so auftreten.
Bild hier
Wie gesagt, es ist eben keine min-max-Grenze (das wäre falsch, wen du das so verstehst), sondern sagt nur aus, wie breit der Bereich für +/- 1 sigma (=1 Standardabweichung) ist, und die betrifft IMMER nur 68% aller Stichproben-(Mess-)-Werte. Es ist quasi ein Naturgesetz in unserem Universum, genau wie die Eulersche Zahl e oder die Kreiszahl Pi als Naturkonstanten.
Es gibt allerdings auch Herstellerangaben, die diese "Messgenauigkeitsbreite" z.B. auf +/-2*sigma Abweichung angeben, dann gilt dieser Bereich logischerweise für ca. 95,5% aller Messwerte; das ändert aber nichts an dem Aussehen der Gauß-Kurve und der Verteilung innerhalb der einfachen , zweifachen oder dreifachen Standardabweichung.
Auch dann werden aber immer auch völlig "legale" Werte auftreten, die außerhalb dieses "Vertrauens-Bereichs" liegen, nur dürfen sie dann nur mit einer sehr geringen stat. Häufigkeit auftreten, die der Höhe der Gauß-Kurve an dieser Stelle entspricht. Treten sie jedoch dort häufiger auf, dann stimmt was nicht: Sensor kaputt oder Standardabweichung falsch berechnet oder externe Einflüsse oder was auch immer.
Die +/- 1*sigma Grenzen entsprechen dabei in der Gauß-Glockenkurve immer exakt ihren mathematischen Wendepunkten links und rechts vom Mittelwert.
Abstriche muss man allerdings insoweit machen, dass diese "Normalverteilung" ein mathematischer Idealfall ist, der bei Stichproben in der naturwissenschaftlichen Praxis immer nur angenähert auftritt, und manche Stichproben sind möglicherweise auch völlig anders als normal-verteilt, dann muss man ein völlig anderes mathematisches Modell zur Beschreibung Ihrer Verteilung verwenden.
Lesezeichen