- LiFePO4 Speicher Test         
Ergebnis 1 bis 10 von 66

Thema: Sensorfusion mit unterschiedlicher statistischer Fehlerrate

Hybrid-Darstellung

Vorheriger Beitrag Vorheriger Beitrag   Nächster Beitrag Nächster Beitrag
  1. #1
    HaWe
    Gast
    Warum steht dann im Artikel "Standardabweichung" und insbesondere: Warum kommt beim Einsetzen der Standardabweichung etwas anderes heraus?
    da steht nicht "Standardabweichung", sondern Unsicherheiten !
    Ich hatte es bereits einmal angemerkt, s.o.!
    In der Messtechnik kann es angebracht sein, verschiedene Messwerte mit den Kehrwerten ihrer Unsicherheiten zu gewichten.
    Was schlägst du also als "Unsicherheiten" vor, zumal die absoluten Fehler ja lt. Vorraussetzung stark von der Messdistanz abhängen, anders als die rel. Fehler, die als "Unsicherheiten" über den gesamten Messbereich ziemlich konstant sind?

    Die absolute Standardabweichung über den kompletten Messbereich macht eher keinen Sinn, denn wenn diese ca. 20 beträgt (bes. groß durch die Fehler bei größeren Distanzen), dann bekäme ich bei einer Distanz von 10cm ein teilw ins Negative reichende Gauss-Kurve.

  2. #2
    Erfahrener Benutzer Roboter Genie
    Registriert seit
    07.04.2015
    Beiträge
    897
    Die Unsicherheit ist im Wiki verlinkt. Lese da weiter. Das ist auch ein Absolutwert.

  3. #3
    HaWe
    Gast
    Zitat Zitat von Holomino Beitrag anzeigen
    Die Unsicherheit ist im Wiki verlinkt. Lese da weiter. Das ist auch ein Absolutwert.
    nein, das wird nicht eindeutig definiert, nur darauf hingewiesen, dass es ein Absolutwert und ebenfalls ein Schätzwert ist und es verschiedene Bestimmungsmethoden gibt.
    Dass dieser identisch sein soll mit der absoluten Standardabweichung und NICHT der relativen, oder auch etwas ganz anderem, das steht dort nicht (zumindest nicht gefunden).

    Wenn ich dich aber richtig verstehe, würdest du die absolute Standardabweichung verwenden, ja?

  4. #4
    Erfahrener Benutzer Roboter Genie
    Registriert seit
    07.04.2015
    Beiträge
    897
    Naja, aus dem Notationskapitel geht's ja recht eindeutig hervor, was gemeint ist.

    Und eine leichte Verschiebung in die eine oder andere Richtung kommt mit (nach einigem schrägen Denken) absolut logisch vor. Zumindest mit der folgenden Argumentation:
    Bevorzuge den "besseren" Sensor in der Gewichtung. Bei gleichem Variationskoeffizienten und gleicher Trefferwahrscheinlichkeit misst der Sensor mit dem kürzeren Messwert zumindest hypothetisch besser (weil absolut ein kleinerer Fehler zu erwarten ist).

  5. #5
    HaWe
    Gast
    Naja, aus dem Notationskapitel geht's ja recht eindeutig hervor, was gemeint ist.
    meinst du mit Notationskapitel das hier:
    Zu einem Messergebnis als Näherungswert für den wahren Wert einer Messgröße soll immer die Angabe einer Messunsicherheit gehören. Diese grenzt einen Wertebereich ein, innerhalb dessen der wahre Wert der Messgröße mit einer anzugebenden Wahrscheinlichkeit liegt (üblich sind Bereiche für ungefähr 68 % und ungefähr 95 %). Dabei soll der als Messergebnis verwendete Schätzwert oder Einzelmesswert bereits um bekannte systematische Abweichungen korrigiert sein.[1]
    68% stat. Wahrscheinlichkeitsbereich liegt ja innerhalb +/- 1 sigma, und 95% zwischen +/- 2 sigma um den echten Wert herum. (edit: sigma = Standardabweichung)
    Dabei wird aber auch auf den "GUM" zur Ermittlung verwiesen, und hier heißt es
    Das Beiblatt beschreibt die Anwendung der Monte-Carlo-Methode zur Ermittlung der Messunsicherheit.
    Dese Monte-Carlo-Methode allerdings hat ja nichts mehr mit der Berechnung der Gaussschen Standardabweichung zu tun.

    Was also ist genau dein Vorschlag, um rechnerisch
    verschiedene Messwerte mit den Kehrwerten ihrer Unsicherheiten zu gewichten
    ?

  6. #6
    Erfahrener Benutzer Roboter Genie
    Registriert seit
    07.04.2015
    Beiträge
    897
    Wie gesagt, ich gehe da 'nen anderen Weg.

    Das Wertbildung über mehrere Sensoren sehe ich gar nicht als so kritisch. Was mich viel mehr bei der Fusion interessiert, ist die systematische Identifikation von Ausreißern und die Bestimmung eines Gütefaktors des so gemeinsam generierten Wertes. Der Wert mag besser sein, aber seine Unschärfe hat er über die Fusion nicht verloren.

    Klicke auf die Grafik für eine größere Ansicht

Name:	ThreeCompareDifferentDistances.jpg
Hits:	6
Größe:	81,2 KB
ID:	33598

    Das Bild zeigt mal drei unterschiedliche Fälle, in denen ich nur die Distanz des "besten" Sensors verschiebe. Ohne irgendwelche Ausnahmeregeln oder Thresholds zu definieren, zeigt sich schon über die Summe der Wahrscheinlichkeiten zu einer vermuteten "wahren" Distanz, wie der "genaue" Sensor immer mehr zum Ausreißer wird.

  7. #7
    HaWe
    Gast
    bei mehreren unterschiedlichen Sensoren kann ja der zuverlässigste Sensor mit 1% Wahrscheinlichkeit auch einen Wert außerhalb von +/- 3 sigma liefern, also bei 1m und sigma=5 z.B. >115
    oder mit 5% Wahrsch. (2*sigma) <90 oder >110,
    und ein unzuverlässigerer kann durchaus bei 1m und sigma=20 den echten Wert auf den Kopf treffen oder auch bei 95 landen bzw. mit 68% Wahrsch. (1*sigma) irgendwo zwischen 80 und 120.

    Nur statistisch wird es sich den echten Verhältnissen auf lange Sicht annähern.
    Wenn du also misst, weisst du nicht, wer recht hat, du musst dich auf statistische Funktionen zurückziehen, die mit größtmöglicher Wahrscheinlichkeit den tatsächlichen Wert am besten approximieren.

    Ich verstehe jetzt daher noch nicht, wie du die Fälle 1+2 aus dem TOP in "deiner Weise" ausrechnen willst, anders als mit einem per "Vertrauenskoeffizienten" gewichteten Durchschnitt?

Ähnliche Themen

  1. Sensorfusion Kompass und Ultraschall (Zeitstempel?)
    Von BattleBot im Forum Robby RP6
    Antworten: 1
    Letzter Beitrag: 13.01.2013, 03:46
  2. [ERLEDIGT] Infos zu den Themen Sensorfusion / Kalman-Filterung?
    Von katakombi_ im Forum Sensoren / Sensorik
    Antworten: 2
    Letzter Beitrag: 28.01.2005, 19:44

Berechtigungen

  • Neue Themen erstellen: Nein
  • Themen beantworten: Nein
  • Anhänge hochladen: Nein
  • Beiträge bearbeiten: Nein
  •  

Solar Speicher und Akkus Tests