update: ein paar KLeinigkeiten habe ich jetzt noch hier und da verändert und da und dort was rumprobiert - aber die Geschwindigkeit fürs hin- und her-schicken der Arrays ist nach wie vor unter aller Sau. 2 sec für 48bytes lange Arrays!!
Selbst bei der halben Baudrate (19200 statt 38400) müsste ich 50x so schnell übertragen können!
hier der aktuelle Code wen's interessiert, aber ich denke, ich brauche wirklich was fertiges, funktionierendes!
Da muss es doch gute und bewährte Lösungen geben!
Code:
/* Tx master
ver 0004a
IDE 1.6.5
*/
#include <SPI.h>
#include <SD.h>
#include <UTFTQD.h>
#include <Adafruit_GFX.h>
#include <Adafruit_ILI9340.h>
#define clock() millis()
//=====================================================================================
// TFT LCD
//=====================================================================================
#define UTFT_SmallFont 8 // UTFT 8x10
#define UTFT_MediumFont 12 // UTFT ++
#define UTFT_BigFont 18 // UTFT +++
#define _SmallFont_ 1 // 9341 6x9
#define _MediumFont_ 2 // 9341 12x16
#define _BigFont_ 3 // 9341 18x23
int16_t LCDmaxX , LCDmaxY ; // display size
int16_t _curx_, _cury_, // last x,y cursor pos on TFT screen
_maxx_, _maxy_; // max. x,y cursor pos on TFT screen
char wspace[128]; // line of white space
// set LCD TFT type
int16_t LCDTYPE = -1;
#define _LCD1602_ 1 // LCD1602 Hitachi HD44780 driver <LiquidCrystal.h>
// http://www.arduino.cc/en/Tutorial/LiquidCrystal //
#define _SERLCD_ 2 // Sparkfun serLCD 16x2
// http://playground.arduino.cc/Code/SerLCD //
#define _UTFT_ 4 // Henning Karlsen UTFT 2.2-2.4" 220x176 - 320x240 lib
// http://henningkarlsen.com/electronics/library.php?id=51 //
#define _ILI9341_ 8 // https://github.com/adafruit/Adafruit_ILI9340
// https://github.com/adafruit/Adafruit-GFX-Library //
//--------------------------------------------------------------------------------------------------
#define UTFT_cs 52 // <<<<<<<< adjust!
//UTFT qdUTFT(Model, SDA=MOSI, SCL, CS, RESET, RS) // Due: 3 exposed SS pins: 4,10,52
UTFT qdUTFT(QD220A, A2, A1, A5, A4, A3); // adjust model parameter and pins!
//UTFT qdUTFT(QD220A, 50, 49, UTFT_cs, 0, 51); // A0->Vc (LED), A4->BoardReset
extern uint8_t SmallFont[];
//--------------------------------------------------------------------------------------------------
#define tft_cs 50
#define tft_dc 49
#define tft_rst 0
Adafruit_ILI9340 tft = Adafruit_ILI9340(tft_cs, tft_dc, tft_rst);
//--------------------------------------------------------------------------------------------------
int16_t fontwi= 8; // default
int16_t fonthi=10; // default
void putfonttype(uint8_t fsize) {
if(LCDTYPE==_UTFT_) { fontwi= qdUTFT.getFontXsize(); fonthi=qdUTFT.getFontYsize(); }
else
if(fsize==_SmallFont_) { fontwi= 6; fonthi=9; } // 5x7 + overhead ?
else
if(fsize==_MediumFont_) { fontwi=12; fonthi=16; } // ?
else
if(fsize==_BigFont_) { fontwi=18; fonthi=23; } // ?
_maxx_ = LCDmaxX / fontwi; // max number of letters x>>
_maxy_ = LCDmaxY / fonthi; // max number of letters y^^
memset(wspace, ' ', _maxx_); // line of white space
wspace[_maxx_]='\0';
}
void setlcdorient(int8_t orient) {
if(LCDTYPE==_ILI9341_) {
tft.setRotation(orient);
LCDmaxX=tft.width();
LCDmaxY=tft.height();
}
}
void lcdcls() {
if(LCDTYPE==_UTFT_) { qdUTFT.clrScr(); }
if(LCDTYPE==_ILI9341_) { tft.fillScreen(ILI9340_BLACK); }
_curx_ =0; _cury_ =0;
}
void curlf() {
_curx_=0;
if( _cury_ <=(LCDmaxY-10) ) _cury_+=fonthi;
else _cury_=0;
if(LCDTYPE==_ILI9341_) {tft.setCursor(0, _cury_); }
}
void curxy(int16_t x, int16_t y) {
_curx_ = x;
_cury_ = y;
if(LCDTYPE==_ILI9341_) {tft.setCursor(x, y); }
}
void lcdprintxy(int16_t x, int16_t y, char * str) {
if(LCDTYPE==_UTFT_) { qdUTFT.print(str,x,y); _curx_=x+strlen(str)*fontwi; _cury_=y; }
else if(LCDTYPE==_ILI9341_) {
tft.setCursor(x,y); tft.print(str);
_curx_=tft.getCursorX(); _cury_=tft.getCursorY();
}
}
void lcdprint(char * str) {
if(LCDTYPE==_UTFT_) { qdUTFT.print(str, _curx_, _cury_); _curx_=_curx_+strlen(str)*fontwi; }
else if(LCDTYPE==_ILI9341_) {
tft.setCursor(_curx_, _cury_); tft.print(str);
_curx_=tft.getCursorX(); _cury_=tft.getCursorY();
}
}
void initlcd(uint8_t orient) { // 0,2==Portrait 1,3==Landscape
if(LCDTYPE==_UTFT_) {
qdUTFT.InitLCD();
LCDmaxX=qdUTFT.getDisplayXSize();
LCDmaxY=qdUTFT.getDisplayYSize();
qdUTFT.setFont(SmallFont);
putfonttype(UTFT_SmallFont);
fontwi=qdUTFT.getFontXsize();
fonthi=qdUTFT.getFontYsize();
}
else
if(LCDTYPE==_ILI9341_) {
tft.begin();
setlcdorient(orient);
tft.setTextSize(_SmallFont_);
putfonttype(_SmallFont_);
}
}
//=====================================================================================
//=====================================================================================
const uint8_t bwidth=48;
uint8_t bsync=255;
uint8_t val[bwidth];
uint8_t inval[bwidth];
//=====================================================================================
const uint32_t UARTclock=38400;
void setup() {
char sbuf[128];
int32_t i=0;
// Serial
Serial.begin(115200); // USB terminal
Serial1.begin(UARTclock); // RX-TX UART
while(Serial1.available()) Serial1.read(); // clear output buffer
Serial1.setTimeout(1000);
// TFT LCD
LCDTYPE = _UTFT_;
initlcd(1);
sprintf(sbuf, "LCD=%d wi%d x hi%d",LCDTYPE,LCDmaxX,LCDmaxY);
lcdcls(); lcdprint(sbuf);
sprintf(sbuf, "setup(): done.");
curlf(); curlf(); lcdprint(sbuf);
lcdcls();
sprintf(sbuf, "Tx master, BAUD= %ld", UARTclock );
lcdprintxy(0, 0, sbuf);
}
//=====================================================================================
//=====================================================================================
uint8_t checksum(uint8_t array[]) {
int32_t sum=0;
for(int i=2; i<bwidth; ++i) sum+=(array[i]);
return (sum & 0x00ff);
}
//=====================================================================================
void displayvalues(int line, char * caption, uint8_t array[]) {
int cnt;
char sbuf[128];
sprintf(sbuf, "%s cks=%-4d", caption, array[1]);
lcdprintxy(0, line, sbuf);
//Serial.println(sbuf);
for(cnt=0; cnt<8; ++cnt) {
sprintf(sbuf, "%3d ", array[cnt]); // print on TFT
lcdprintxy(cnt*3*8, line+10, sbuf);
//Serial.print(sbuf); // Print value to the Serial Monitor
}
//Serial.println();
}
//=====================================================================================
//=====================================================================================
void loop()
{
char sbuf[128];
static int cnt=0;
uint8_t ibuf[bwidth], chk;
uint32_t xtime;
// send to Rx slave Arduino
//Serial.println();
chk=(byte)checksum(val);
val[1]=chk;
val[0]=bsync;
for(cnt=0; cnt<bwidth; ++cnt) {
Serial1.write(val[cnt]); // Send value to the Rx Arduino
}
Serial1.flush(); // clear output buffer
displayvalues(20, "Transmitted...: ", val);
// Receive from Rx slave Arduino
cnt=0;
memset(ibuf, 0, sizeof(ibuf));
while(!Serial1.available() ) { // wait for data to come
if( clock()-xtime >2000) break;
}
if(Serial1.available() ) {
Serial1.readBytes(ibuf, bwidth); // Get them.
}
while(Serial1.available()) Serial1.read(); // clear input buffer
if( ibuf[0]==bsync ) { // byte 0 == syncbyte ?
displayvalues(60, "Received...:", ibuf);
chk=(byte)checksum(ibuf);
if( chk == ibuf[1] ) { // chksum ok? <<<<<<<<<<< outcomment ?
memcpy(inval, ibuf, sizeof(ibuf));
//displayvalues(100, "checked...:", inval);
// change invalues to send back!
memcpy(val, inval, sizeof(val)); // copy inbuf to outbuf
val[0]=bsync;
val[4]+=1; // change [4] to send back
}
}
}
//=====================================================================================
//=====================================================================================
Code:
/* Rx slave
ver 0004a
IDE 1.6.5
*/
#include <SPI.h>
#include <SD.h>
#include <UTFTQD.h>
#include <Adafruit_GFX.h>
#include <Adafruit_ILI9340.h>
#define clock() millis()
//=====================================================================================
// TFT LCD
//=====================================================================================
#define UTFT_SmallFont 8 // UTFT 8x10
#define UTFT_MediumFont 12 // UTFT ++
#define UTFT_BigFont 18 // UTFT +++
#define _SmallFont_ 1 // 9341 6x9
#define _MediumFont_ 2 // 9341 12x16
#define _BigFont_ 3 // 9341 18x23
int16_t LCDmaxX , LCDmaxY ; // display size
int16_t _curx_, _cury_, // last x,y cursor pos on TFT screen
_maxx_, _maxy_; // max. x,y cursor pos on TFT screen
char wspace[128]; // line of white space
// set LCD TFT type
int16_t LCDTYPE = -1;
#define _LCD1602_ 1 // LCD1602 Hitachi HD44780 driver <LiquidCrystal.h>
// http://www.arduino.cc/en/Tutorial/LiquidCrystal //
#define _SERLCD_ 2 // Sparkfun serLCD 16x2
// http://playground.arduino.cc/Code/SerLCD //
#define _UTFT_ 4 // Henning Karlsen UTFT 2.2-2.4" 220x176 - 320x240 lib
// http://henningkarlsen.com/electronics/library.php?id=51 //
#define _ILI9341_ 8 // https://github.com/adafruit/Adafruit_ILI9340
// https://github.com/adafruit/Adafruit-GFX-Library //
//--------------------------------------------------------------------------------------------------
#define UTFT_cs 52 // <<<<<<<< adjust!
//UTFT qdUTFT(Model, SDA=MOSI, SCL, CS, RESET, RS) // Due: 3 exposed SS pins: 4,10,52
UTFT qdUTFT(QD220A, A2, A1, A5, A4, A3); // adjust model parameter and pins!
//UTFT qdUTFT(QD220A, 50, 49, UTFT_cs, 0, 51); // A0->Vc (LED), A4->BoardReset
extern uint8_t SmallFont[];
//--------------------------------------------------------------------------------------------------
#define tft_cs 50
#define tft_dc 49
#define tft_rst 0
Adafruit_ILI9340 tft = Adafruit_ILI9340(tft_cs, tft_dc, tft_rst);
//--------------------------------------------------------------------------------------------------
int16_t fontwi= 8; // default
int16_t fonthi=10; // default
void putfonttype(uint8_t fsize) {
if(LCDTYPE==_UTFT_) { fontwi= qdUTFT.getFontXsize(); fonthi=qdUTFT.getFontYsize(); }
else
if(fsize==_SmallFont_) { fontwi= 6; fonthi=9; } // 5x7 + overhead ?
else
if(fsize==_MediumFont_) { fontwi=12; fonthi=16; } // ?
else
if(fsize==_BigFont_) { fontwi=18; fonthi=23; } // ?
_maxx_ = LCDmaxX / fontwi; // max number of letters x>>
_maxy_ = LCDmaxY / fonthi; // max number of letters y^^
memset(wspace, ' ', _maxx_); // line of white space
wspace[_maxx_]='\0';
}
void setlcdorient(int8_t orient) {
if(LCDTYPE==_ILI9341_) {
tft.setRotation(orient);
LCDmaxX=tft.width();
LCDmaxY=tft.height();
}
}
void lcdcls() {
if(LCDTYPE==_UTFT_) { qdUTFT.clrScr(); }
if(LCDTYPE==_ILI9341_) { tft.fillScreen(ILI9340_BLACK); }
_curx_ =0; _cury_ =0;
}
void curlf() {
_curx_=0;
if( _cury_ <=(LCDmaxY-10) ) _cury_+=fonthi;
else _cury_=0;
if(LCDTYPE==_ILI9341_) {tft.setCursor(0, _cury_); }
}
void curxy(int16_t x, int16_t y) {
_curx_ = x;
_cury_ = y;
if(LCDTYPE==_ILI9341_) {tft.setCursor(x, y); }
}
void lcdprintxy(int16_t x, int16_t y, char * str) {
if(LCDTYPE==_UTFT_) { qdUTFT.print(str,x,y); _curx_=x+strlen(str)*fontwi; _cury_=y; }
else if(LCDTYPE==_ILI9341_) {
tft.setCursor(x,y); tft.print(str);
_curx_=tft.getCursorX(); _cury_=tft.getCursorY();
}
}
void lcdprint(char * str) {
if(LCDTYPE==_UTFT_) { qdUTFT.print(str, _curx_, _cury_); _curx_=_curx_+strlen(str)*fontwi; }
else if(LCDTYPE==_ILI9341_) {
tft.setCursor(_curx_, _cury_); tft.print(str);
_curx_=tft.getCursorX(); _cury_=tft.getCursorY();
}
}
void initlcd(uint8_t orient) { // 0,2==Portrait 1,3==Landscape
if(LCDTYPE==_UTFT_) {
qdUTFT.InitLCD();
LCDmaxX=qdUTFT.getDisplayXSize();
LCDmaxY=qdUTFT.getDisplayYSize();
qdUTFT.setFont(SmallFont);
putfonttype(UTFT_SmallFont);
fontwi=qdUTFT.getFontXsize();
fonthi=qdUTFT.getFontYsize();
}
else
if(LCDTYPE==_ILI9341_) {
tft.begin();
setlcdorient(orient);
tft.setTextSize(_SmallFont_);
putfonttype(_SmallFont_);
}
}
//=====================================================================================
//=====================================================================================
const uint8_t bwidth=48;
uint8_t bsync=255;
uint8_t val[bwidth];
uint8_t inval[bwidth];
//=====================================================================================
const uint32_t UARTclock=38400;
void setup() {
char sbuf[128];
int32_t i=0;
// Serial
Serial.begin(115200); // USB terminal
Serial1.begin(UARTclock); // RX-TX UART
while(Serial1.available()) Serial1.read(); // clear output buffer
Serial1.setTimeout(1000);
// GPIO pins default = INPUT_PULLUP, 13 for LED13
Serial.println();
Serial.println("GPIO pin mode default: INPUT_PULLUP");
for ( i= 2; (i<=13); ++i) pinMode(i, INPUT_PULLUP);
pinMode(13, OUTPUT);
for ( i=22; (i<=53); ++i) pinMode(i, INPUT_PULLUP);
// TFT LCD
Serial.println();
LCDTYPE = _UTFT_;
Serial.print("init LCD...");
initlcd(1);
Serial.println(" done."); lcdcls();
sprintf(sbuf, "LCD=%d wi%d x hi%d",LCDTYPE,LCDmaxX,LCDmaxY);
Serial.println(sbuf);
Serial.println();
lcdcls(); lcdprint(sbuf);
sprintf(sbuf, "setup(): done.");
Serial.println(); Serial.println(sbuf);
curlf(); curlf(); lcdprint(sbuf);
lcdcls();
sprintf(sbuf, "Rx slave, BAUD= %ld", UARTclock );;
lcdprintxy(0, 0, sbuf);
}
//=====================================================================================
//=====================================================================================
uint8_t checksum(uint8_t array[]) {
uint32_t sum=0;
for(int i=2; i<bwidth; ++i) sum+=(array[i]);
return (sum & 0x00ff);
}
//=====================================================================================
void displayvalues(int line, char * caption, uint8_t array[]) {
int cnt;
char sbuf[128];
sprintf(sbuf, "%s cks=%-4d", caption, array[1]);
lcdprintxy(0, line, sbuf);
//Serial.println(sbuf);
for(cnt=0; cnt<8; ++cnt) {
sprintf(sbuf, "%3d ", array[cnt]); // print on TFT
lcdprintxy(cnt*3*8, line+10, sbuf);
//Serial.print(sbuf); // Print value to the Serial Monitor
}
//Serial.println();
}
//=====================================================================================
void loop(){
char sbuf[128];
static int cnt=0;
uint8_t ibuf[bwidth], chk;
uint32_t xtime;
cnt=0;
memset(ibuf, 0, sizeof(ibuf));
xtime=clock();
while(!Serial1.available() ) { // wait for data to come
if( clock()-xtime >2000) break;
}
if(Serial1.available() ) {
Serial1.readBytes(ibuf, bwidth); // Get them.
}
while(Serial1.available()) Serial1.read(); // clear input buffer
if( ibuf[0]==bsync ) { // byte 0 == syncbyte ?
displayvalues(20, "Received...:", ibuf);
chk=(byte)checksum(ibuf);
if( chk == ibuf[1] ) { // chksum ok? <<<<<<<<<<< outcomment ?
//displayvalues(60, "checked...:", ibuf);
memcpy(inval, ibuf, sizeof(ibuf));
// change values to send back!
memcpy(val, inval, sizeof(val)); // copy inbuf to outbuf
val[0]=bsync;
val[6]+=1; // change [6] to send back
}
}
// array send back to master:
//Serial.println();
chk=(byte)checksum(val);
val[1]=chk;
for(cnt=0; cnt<bwidth; ++cnt) {
Serial1.write(val[cnt]); // Send value to the Rx Arduino
}
Serial1.flush(); // clear output buffer
displayvalues(100, "back to master...:", val);
}
//=====================================================================================
//=====================================================================================
Lesezeichen