Das Prinzip mit dem Abschalten des Integratoranteils ist eigentlich ein einfacher Anti-Windup-Effekt, den ich getestet hatte, nachdem ich mir ein paar Formen von Anti-Windup-Strukturen angesehen hatte. Da lässt sich wahrscheinlich auch noch ein wenig was verbessern.

Hier ist der Standard-Trick beim Anlauf einen kurzen Impuls auf den Motor zu geben. Der Motor bekommt z.B. für ein paar MS die volle Betriebsspannung, danach wird der Stell ausgegeben,
Hmm, wie wird das denn realisiert? Und die Drehzahl ist auch nicht genau linear abhängig zur Spannung, soweit ich messen konnte. Ich hab das so bemerkt, dass bei einer bestimmten Spannung der Motor sich anfängt zu drehen, wenn man dann mit der Spannung runtergeht dreht sich der Motor langsamer und bleibt dann irgendwann stehen, aber an dieser Stelle ist die Spannung auch nicht 0V. Man hätte also eine Losbrechspannung und eine etwas niedrigere Stopspannung, also so ein leichtes Hystereseverhalten.

Was mir auch aufgefallen ist: betreibe ich den Motor am Labornetzteil, fängt er schon bei 0,5V an sich ganz langsam zu drehen, betreibe ich ihn allerdings bei 12V mit einer PWM bis zu 40% dreht er sich immer noch nicht. Ich hab da irgendwie keine Erklärung für. Wahrscheinlich muss ich da mal mit dem Oszi ran.

Ich hoffe auf jeden Fall, später mit einer weitern Untersetzung über Zahnriemen das Spiel noch ein wenig vermindern zu können. Außerdem scheint ja eine gewisse Dämpfung für die Regelung sogar förderlich zu sein.