An sich sollte ein Spannungsregler Rippel (100 Hz ) so weit reduzieren dass man das nicht mehr mit dem Oszilloskop sieht. Auch ein Labornetzteil sollte keinen merklichen Rippel haben, vor allem nicht bei einem linear geregelten. Falls das Labornetzteil per Schaltregler arbeitet wäre ggf. HF Rippel (eher so 50 kHz) möglich. Das filtert man dann am besten vor dem Spannungsregler per LC-Filter. An sich sollte sich Rippel auf der Versorgung so weit reduzieren lassen, dass man es nicht mehr sieht mit einem normalen Scope.
Welche Frequenz hat denn das Rippel ?
Ein LC Glied am ARef Eingang ist sehr ungewöhnlich, genau so wie die externe Verbindung zu VCC. Wenn es wirklich VCC sein soll, geht das in der Regel intern, dann gehört nur ein Kondensator an den ARef Pin. Als Ref. Spannung würde sich hier eher die Hälfte der 5 V für den Sensor anbieten.
Die Rechnung mit dem Tiefpass sieht so weit Ok aus. Für den AD Eingang muss man ggf aufpassen mit den Eingangswiederstand. Ein Kondensator von weniger als 100 nF am Eingang des ADs kann da ggf. auch schon kontraproduktiv sein.
So fern das netzsynchrone Störungen sind (also 50 Hz / 100 Hz) ist eine Filterung in Software vermutlich die deutlich bessere Lösung: einfach mehrmals den AD Wandler auslesen und über ein Intervall von 20 ms oder vielfache davon mitteln. Das gibt eine sehr gute Unterdrückung auch größerer Störungen, und nebenbei bekommt man durch Oversampling auch noch mehr Auflösung. Ein entsprechender Tiefpass 1. Ordnung müsste da schon eine Grenzfrequenz von rund 1 Hz oder weniger haben, um so gut zu wirken.
Lesezeichen