Zitat Zitat von Besserwessi
Bei den Leitungen kommt es nicht nur auf den Queschnitt an, der gibt nur den Gelichstromwiderstand vor. Gerade bei höherfrequenten Störungen wird auch die Induktivität wichtig, und da gehen die Länge, Breite und der Abstand zwischen den Leiterbahnen mit ein. Ein auf die Leiterbahn gelöteter Draht bringt für die Induktivität kaum Vorteile. Besser eine breitere Leiterbahn.

Die sternförmige Masse kann da ein wichtiger Punkt sein, der noch nicht so richtig aus derm Plan ober hervorgeht.

Wegen der doch eher langen Leitungen zum Servo ist der extra 1 nF Kondensator nicht nötig. Der 100 nF sollte aber für jeden Servo extra sein. Bei den Elkos wird man nicht für jeden Servo einen eigenen Elko brauchen, denn für die Frequnezen die mit den Elko abgefangen weren können sind die Verbindungen eher kurz, und die Elkos sollten für alle Servos zusammen wirken. Mehrere kleine Elkos (z.B. 470 µF) können schon helfen für eine günstigere Bauform und kürzere Verbindungen.
Hallöle,

die innere Induktivität eines Drahtes nimmt mit zunehmenden Querschnitt ab und bei einer fertigen Platine ist auflöten ein brauchbares Mittel.

Der 1nF (bzw 100pF) Kondensator hat schon seine Berechtigung für den Bereich höchster Frequenzen. Er verbessert das Impulsverhalten der Anordnung ungemein, da Leitungen ein sehr komplexes Verhalten haben. In diesem Fall ist es wohl so, daß der am Ende der Leitung (Servo) durch Einschalten des Motors verursachte Kurzschluß (sehr steiler Impuls mit entsprechend hochfrequenten Signalanteilen) eben mit so etwa 20cm/ns durch das Käbelchen flitzt und am Anfang der Leitung (Stützkondensatoren) genauso steil ankommt. Um das schwache Netz, also die Servospannungsversorgung, effektiv zu stützen, führt kein Weg an Kondensatoren mit guten Hochfrequenzeigenschaften vorbei. Bei Elkos ist da bei ein paar zehn Kilohertz einfach Schluß. Den Frequenzbereich bis etwa 2Mhz macht der hoffentlich gute 100nF Kondensator und für Frequenzen darüber ist der Kleine verantwortlich.

georg