Huch, da fühle ich mich aber geschmeichelt! Daß ich mich mit der Frage beschäftigt habe findet seine einfache Erklärung darin, daß ich auch so ein Teil erworben habe und zum Leben erwecken will.
Es sind jedenfalls drei Chips unter dem schwarzen Kleister, also tatsächlich 3x144bit Schieberegister hintereinander. Kann sein, daß jeder davon sein eigenes ENB bekommt, kann aber auch sein, daß die ENBs nicht für Pixelblöcke gelten sondern verschränkt, d.h. ENB0 für Pixel 0,4,8,12…, ENB1 für 1,5,9,13… Das war zumindest meine erste Vermutung, aber ein rationale Begründung dafür finde ich nicht. Höchstens den einen Hinweis, daß sonst ENB3 überflüssig wäre. Andererseits gibt es am Interface durchaus mal überflüssige ENBs (siehe z.B. FTP-621DCL002, wo ENB3-ENB5 als "not used" markiert sind).
Mit der Vermutung zur Anschlußbelegung bin ich eher pessimistisch. Es schadet aber nichts, erstmal mit dieser Kombination anzufangen, solange man keine besseren Hinweise hat.
(etwas später) OK, Messen war genau genau die richtige Idee. Ich hätt's ja nicht erwartet (CMOS-Eingänge sind ja sooo hochohmig), aber es sind tatsächlich Unterschiede zu erkennen, wenn man den Widerstand gegen GND (Pins 10, 11 und 12) mißt. Digitalmultimeter, einmal im 20k und einmal im 20M-Bereich, damit man den Unterschied zwischen einem Ohmschen Widerstand und Halbleiterblendwerk sieht:
Code:
1 2 3 6 7 8 9
17k9 18k6 16k9 16k7 16k8 16k8 10k8
3M10 2M89 2M89 3M07 3M07 3M07 0M01
(Edit: Nanu, was ist denn hier mit [code] los? Wie soll man denn da Tabellen bauen?)
Pins 6, 7 und 8 sehen praktisch gleich aus, das werden also die ENBs sein. 3 ist relativ niederohmig, könnte also CLK oder LAT sein, weil die schließlich an allen Chips parallel hängen. Aber so richtig deutlich sind die Pins 1-3 nicht… Pin 9 fällt dadurch auf, daß es tatsächlich 10kOhm sind, ohne Nichtlinearität. Vielleicht sollten wir den zu +5V ("Power for logic") ernennen, von irgendwas will das Schieberegister schließlich auch leben.
Bezüglich der Betriebstemperatur würde ich irgendwas zwischen 100 und 200 °C schätzen, aber echte Information macht sich rar. Im Druckerdatenblatt steht nix, im Datenblatt zum empfohlenen Papier ("Recommended thermal sensitive paper: FTP-020P0020"), auch nicht, außer "Heat resistance: +50°C, 24 hours", d.h. bei 50°C wird es noch nicht schwarz.
Dann fällt mir noch das Handbuch zu meinem alten Laserdrucker ein, wo u.a. davor gewarnt wird, Thermopapier bedrucken zu wollen, da die Fixiereinheit mit ihren 177°C das sowieso gründlich schwärzt.
Wer eine Lötstation mit digitale Temperaturanzeige hat, kann ja mal testen, wie weit man das runterdrehen kann, bis der Lötkolben das Thermopapier nicht mehr schwärzt.
Wahrscheinlich werden die Heizelemente im Betrieb deutlich heißer als das Papier, weil der Wärmeübergang nicht perfekt ist (keine Wärmeleitpaste oder so). Es wird schon seinen Grund haben, warum die "Platine" aus Keramik ist.
Ein wirkungsvoller Schutz gegen Überhitzung beim Experimentieren wären sicherlich ein paar Tropfen Wasser: das begrenzt die Temperatur auf 100°C und gibt optisch und akustisch Warnung, wenn die Grenze erreicht ist (Zischen und Brodeln). Destilliertes Wasser wäre jedenfalls besser, weil es keine Kalkflecke hinterläßt und nicht so gut leitet. Ich vermute, dem vordere Ende des Druckkopfes mit den Heizelementen macht Wasser nichts aus, aber sicher bin ich mir natürlich nicht, und man riskiert bei Wasser immer, das es sonswohin läuft.
Lesezeichen