Bitte korrigieren, wenn ich Quatsch erzähle!
-------------------------------------------------------------------------------------------

Das Thema ist ein wenig komplizierter, du musst strukturiert da ran gehen. Um die Energieeffizienz musst du dir erstmal keine Sorgen machen. Erst soll es funktionieren, dann optimieren. Das fahren kannst du dir wegdenken. Im stationären Betrieb kommt noch dazu, dass die Energie nicht verschwinden kann, sondern abgebaut werden muss (Bremswiderstand).

Ich gehe von einem DC-Motor aus. Du brauchst dann eine H-brücke, auch 4-Quadranten-Steller genannt (?). Das alleine ist schon nicht so ohne, weil teilweise hohe Ströme fließen und shoot-througs auftreten können. Was du dann baust ist ein Motorregler. Den DC-Motor kannst du auf eine Spule mit hoher Induktivität und (relativ) niedrigen Sättigungsstrom reduzieren.

Du hast verschiedene Zustände, in denen sich dein Regler befinden kann. In jedem Zustand fährst du sozusagen ein bestimmtes Programm, und dein Motor soll auf eine ganz bestimmte Weise reagieren.

- Vorwärts/Rückwürts 100% Duty Cyle:
Du möchtest ganz normalen Gleichstrom durch die Spule schicken. Dafür schließt du einen mosfet auf der highside und einen auf der lowside. Diese dürften natürlich nicht zur selben Halbbrücke gehören, weil du sonst einen kurzschluss (shoot-throug) produzierst. Du hast zwei Möglichkeiten, dies zu tun. Auf diese Weise kannst du die Richtung umkehren.

- Vorwärts/Rückwärts DC < 100%:
Schon schwieriger Im t_on Teil des DC ist alles in Ordnung, es läuft so wie im 100% DC Teil. Wenn du in den t_off Teil des DC wechselst, induziert die Spule eine Spannung. Wenn du die h-brücke mit n-mosfets aufgebaut hast, hast du glück: die freilaufdioden leiten die Spannung ab. Leider sind diese dioden nicht soooo toll, v_f ist ~0.8V. Shottkys paralell zu den Mosfets sind nicht schlecht, dann fallen nur noch 0.3V ab. Wenn das noch zu viel ist, schließt du den entsprechenden Mosfet. Dann fallen ~0V ab, d.h. du praktisch keinen Verlust mehr. Das nennt sich aktiver Freilauf oder synchrone Gleichrichtung. Problem sind die shoot-througs. Du musst eine kurze Zeit zwischen dem umschalten frei lassen. In dieser Zeit fließt der Strom über die Diode, bis zum umschalten. Die mosfets können aber schneller umschalten, wenn V_DS beschränkt ist (Miller?), deswegen wären die shottkys ebenfalls sinnvoll. Beachte, dass die meisten mosfet-treiber mit bootstrapping bleiben, d.h. der DC darf nur im Bereich von ~4% - ~97% sein.

- Bremsen:
Wenn du die beiden lowside mosfets schaltest, legst du beide Anschlüsse der Spule auf Masse. Damit sind die Anschlüsse kurz geschlossen. Jegliche induzierte Spannung (EMF) wird damit kurzgeschlossen und erzeugt damit eine Gegen-EMF. Dadurch wird der Motor gebremst. Ist natürlich nicht ganz so einfach wegen P = I²*R. I wird schnell sehr groß. Damit wird der größte Teil der Energie des Motors, die wegen der Masse sehr groß sein kann, in dem Punkt gewandelt, wo der größte Widerstand ist. Sind das die Mosfets, rauchen diese. Oder die Motorwicklungen. Oder die Anschlüsse...

------------------------------------------------------------------------
Sorry, ich bin bis jetzt nicht wirklich auf deine ursprüngliche Frage eingegangen und habe mich etwas verzettelt. habe auch jetzt keine zeit mehr, dafür aber links Was du noch verstehen solltest, ist, dass oft ein zwischenkreis zwischen akku und motor eingebaut wird. dieser zwischenkreis wird an den akku und an den motor jeweils mit h-brücke angebunden. ist die spannung höher als batteriespannung, wird geladen, usw.

http://www.4qdtec.com/bridge.html hat schöne bilder
http://www.4qd.co.uk/fea/regen.html regenerative braking erklärung.
http://www.dprg.org/tutorials/1998-04a/ noch mehr bilder mit erklärungen
http://www.barello.net/Papers/H-Bridge.pdf das selbe + regenerative braking. continous current mode wird angerissen.
http://www.cogs.susx.ac.uk/users/wb2...ng_Motors.html geht auf die regelung ein, inkl 3-phase brushless

Bei der google Suche hilft es, "-patent" ein zu geben.