Gut erkannt, genau darum geht es hierZitat von Blackbird
@Manf: Hast mal wieder eine vorbildliche Bildchen parat! sehr schick!
Um jetzt aber nocheinmal auf das leidigethema Schrittmotoren aus dem anderen Thread zurückzukommen...:
Zunächst muss man sehen, dass man von dem Bild 3 aus durch aufrollen z.B. zu Bild 2 kommt, bzw, dass die eingezeichneten Größen sich ja bereits alle auch eine Radiale Anordnung beziehen (wie gesagt sehr vorbildlich). Dabei ist es zunächst mal egal, ob der Permanentmagnet außen oder innen (wie beim Schrittmotor sitzt. Im obigen Fall drehen sich die Wicklungen, hier sind die Wicklungen fest und das permanenterregte Magnetfeld dreht sich. Bei solch einer Anordnung ist dann nicht mehr der Bereich interessant, wie groß der Spulendurchmesser ist, sondern die Fäche des Polschuhs (Eisenkernfläche aus der die Spulenfeldlinien austreten). Weiterhin berücksichtigt die obige matematische Beschreibung nicht, dass das B-Feld in den Randbereichen zum angrenzenden Polschuh abnimmt. Und es eine Lücke zwischen den Polschuhflächen geben muß, damit das Magnetfeld wirklich über den Luftspalt verläuft und nicht direkt zum benachbarten Pol "springt".
Bei Gleichstrommotoren wird versucht diesen Effekt durch eine vielzahlan Windungspaketen, bzw geschickte Verteilung der Windungen über den Umfang zu kombensieren, so dass sich insgesamt ein möglichst konstanter Momentenverlauf ergibt (Faulhaber legt seine Windungen beispielsweise nicht rechteckig zu in den Skitzen angedeutet, sondern quasi in einer Raute).
Bei Schrittmotoren, die eine bestimmte Position halten sollen ist es hingegen wünschenswert den Momentenverlauf über dem Umfang möglichst stark ändern zu lassen, je weiter man von der Sollposition wegkommt. Dies wird (neben anderen hier sehr erwünschten Effekten) durch die Zanhnung erreicht. Sowohl der Eisenkern des Läufers als auch die Flächen des Permanentmagneten werden hier mit einer Zahnung versehen. Überdecken sich an einer Sollposition gerade jeweils gerade 5 Zähne und bewegen sich von dieser Position fort. Dadurch wird zwar der maximale Magnetische Fluß kleiner, aber die Änderung des Flusses steigt durch die Verfünfachung von DeltaA größer.
Lesezeichen