Ich habe lediglich die Frage gestellt, wie so ein Baum an einem konkreten Beispiel aussieht, wenn Verhalten, Bewertung und Objektabstraktion in einer Wissenbasis gespeichert sein sollen.
ogni42:
Da ist aber nicht das Verhalten zur Beobachtung eingetragen. Dazu habe ich die weiteren Basen vorgeschlagen. Das kann man da vielleicht reinpacken, wäre aber kein gutes Design, da sich bei einer Verfeinerung das Beobachtungsverhalten ändern kann und somit der keine Verfeinerung der Beobachtung mehr existiert.
Wie soll so etwas in der Wissensbasis repräsentiert werden. Kannst Du ein (am Besten grafisches) Beispiel für einen solchen Baum und die an den Knoten liegenden Elemente geben? Vielleicht habe ich das Prinzip ja nicht verstanden.
Wenn ich richtig verstehe was Du unter "Verhalten zur Beobachtung" verstehst, dann aktualisiert der Roboter die Eigenschaften eines Objektmodells z. B. durch statistische Bewertung oder Eintragung der gegenwärtigen visuellen Änderung des Objektes.
Nochmal: Irgendwann muss es zu dem Punkt kommen, bei dem ein Blatt angelegt wird. Diese erstmalige Anlegen eines Blattes geht nur mit Lehrer. Wenn keine weiteren Knoten/Blätter durch den Lehrer angelegt werden, gibt es keine weiteren Abstraktionen. Oder mal ganz platt gesagt: Wenn alles was wir haben ein Hammer ist, sieht jedes Problem wie ein Nagel aus.
ogni42:
Richtig, und deswegen kann der Roboter die Wissensbasis nie selbständig um neue Objekte bzw. Objektdetaillierungen erweitern. D.h es gilt nur 2b) Erweiterung mit Lehrer.
Nicht so: Der Roboter erkennt selbstständig nur konkrete Objekte. Er erkennt daß ein abstraktes Objektmodell, M(Ok), das beste Modell für das neue Objekt ist. Wenn M(Ok) Nachfolgeknoten hat, dann trägt er das neue Modell Ms(On), als Konkretisierung des Modells M(Ok), als dessen Nochfolger ein. Die Bedingung, daß M(Ok) Nachfolgeknoten haben muß ist nur aus praktischen Gründen gegeben; ohne diese Bedingung könnten unklare strukturen in der Wissensbasis entstehen - aber ich bin nicht sicher ob sie wirklich notwendig ist (das hängt davon ab wie gut die Anfangs-Wissensbasis die Umgebung darstellt)
Es fehlt die Motivation. Beispiel aus dem Menschenreich: Die Inuit kennen viele verschiedene Abstraktionen für Schnee, basierend auf Konsistenz, Aussehen, ... Für uns Mitteleuropäer gibt es keine Motivation die zu lernen. Daher werden wir die auch nicht bilden.
Die Neugier ergibt sich aus einer Zielvorgabe. Exploration setzt - auch beim motivierten Menschen - ein Belohnungssystem voraus. Wie oben gesagt, kann der Roboter, so wie von Dir vorgeschlagen ohne Leherer keine neuen Abstraktionen bilden. Das Objektmodell wird daher immer eingeschränkt bleiben.ogni42:
Wie soll der Roboter ohne Reinforcement-Learning selbständig Neues, für das keine Hypothese gebildet werden kann, hinzu lernen?
Ha, der Roboter ist Neugierig und kann die Wichtigkeit des gegenwärtigen neuen Objektes annähernd bewerten. Wenn das Objekt genügend wichtig ist, bildet und speichert er dessen Modell. Eine Hypothese kann gebildet werden - das gesagte Objektmodell M(Ok) ist die Hypothese.
Nochmals die Bitte: Stelle ein Beispiel für das Objektmodell mit mindestens zwei Kategorien, deren Berwertungs- und Belohungsschema auf und stelle dar, wie das Hinzulernen von neuen Objekten in den Kategorien sowie hinzufügen neuer Kategorien mit und ohne Lehrer funktioniert.
Lesezeichen