Man muss den Roboter nicht lernen, sondern lehren.

Der Roboter lernt dann.

zu 1). Geht grundsätzlich. In der Hauptsache besteht das Problem im Anlegen einer Grundwissensbasis, sowie im Erkennen und Bewerten von Eigenschaften. Dafür braucht es ebenfalls eine (zweite) Wissensbasis, die zumindest Merkmalstypen, die zu Eigenschaften kombiniert werden (Dritte WBasis, nämlich Verknüpfung der Merkmale zu den zu bewertenden Eigenschaften/Verhalten) enthält. Auch diese beiden Basen müssen mit Lehrer trainiert werden.

zu 2.) Geht so nicht, da wenn O_n keine Blätter hat, niemals selbständig ein Blatt erzeugt wird. Alternativ ginge da über die Bewertung von Ähnlichkeitsmaßen. Dafür gibt es aber bessere Strukturen als Bäume, z.B. Support Vector Maschinen, Adaptive Mixture of Experts o.ä. die sich ebenfalls hierarchisieren lassen.

3/4) Es geht besser mit Lehrer aber auch ohne Lehrer, dann aber langsamer. Dazu muss aber das Belohnungsschema/Ziel fest stehen. Hierbei ist aber ein Scheitern möglich, wenn mit keiner Handlungsalternative dem Ziel näher gekommen werden kann.