PDA

Archiv verlassen und diese Seite im Standarddesign anzeigen : SPI Verständnisfrage



Ethernut
01.09.2015, 13:34
Hallo,

ich habe ein Problem mit dem Verstehen des SPI Kommunkationszyklus. Ich habe zwei Unterschiedliche MSP430 µC. Beide im 3-Wire Modus. Der Slave schickt das was der Master sendet als Echo zurück und wenn der Master einen bestimmten char empfängt, den selber zuvor geschickt hat, sollte eine LED leuchten. Unten sind die beiden Codes:

Master:

/* --COPYRIGHT--,BSD_EX
* Copyright (c) 2012, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
************************************************** *****************************
*
* MSP430 CODE EXAMPLE DISCLAIMER
*
* MSP430 code examples are self-contained low-level programs that typically
* demonstrate a single peripheral function or device feature in a highly
* concise manner. For this the code may rely on the device's power-on default
* register values and settings such as the clock configuration and care must
* be taken when combining code from several examples to avoid potential side
* effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware
* for an API functional library-approach to peripheral configuration.
*
* --/COPYRIGHT--*/
//************************************************** ****************************
// MSP430xG46x Demo - USCI_A0, SPI 3-Wire Master Incremented Data
//
// Description: SPI master talks to SPI slave using 3-wire mode. Incrementing
// data is sent by the master starting at 0x01. Received data is expected to
// be same as the previous transmission. USCI RX ISR is used to handle
// communication with the CPU, normally in LPM0. If high, P5.1 indicates
// valid data reception. Because all execution after LPM0 is in ISRs,
// initialization waits for DCO to stabilize against ACLK.
// ACLK = 32.768kHz, MCLK = SMCLK = DCO ~ 1048kHz. BRCLK = SMCLK/2
//
// Use with SPI Slave Data Echo code example. If slave is in debug mode, P5.2
// slave reset signal conflicts with slave's JTAG; to work around, use IAR's
// "Release JTAG on Go" on slave device. If breakpoints are set in
// slave RX ISR, master must stopped also to avoid overrunning slave
// RXBUF.
//
// MSP430FG4619
// -----------------
// /|\| XIN|-
// | | | 32kHz xtal
// --|RST XOUT|-
// | |
// | P7.1|-> Data Out (UCA0SIMO)
// | |
// LED <-|P5.1 P7.2|<- Data In (UCA0SOMI)
// | |
// Slave reset <-|P5.2 P7.3|-> Serial Clock Out (UCA0CLK)
//
//
// K. Quiring/ M. Mitchell
// Texas Instruments Inc.
// October 2006
// Built with CCE Version: 3.2.0 and IAR Embedded Workbench Version: 3.41A
//************************************************** ****************************
#include <msp430.h>

volatile char zeichen = 'A';

char spi_transmit(char data);

int main(void)
{
volatile unsigned int i, j=0;

WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer
FLL_CTL0 |= XCAP14PF; // Configure load caps

// Wait for xtal to stabilize
do {
IFG1 &= ~OFIFG; // Clear OSCFault flag
for (i = 0x47FF; i > 0; i--)
; // Time for flag to set
} while ((IFG1 & OFIFG)); // OSCFault flag still set?

for (i = 2100; i > 0; i--)
; // Now with stable ACLK, wait for
// DCO to stabilize.
P2DIR = 0xFF;
P5OUT = 0x04; // P5 setup for LED and slave reset
P5DIR |= 0x06; //
P7SEL |= 0x0E; // P7.3,2,1 option select
UCA0CTL0 |= UCMST + UCSYNC + UCCKPL + UCMSB; //3-pin, 8-bit SPI master
UCA0CTL1 |= UCSSEL_2; // SMCLK
UCA0BR0 = 0x02; // /2
UCA0BR1 = 0; //
UCA0MCTL = 0; // No modulation
UCA0CTL1 &= ~UCSWRST; // **Initialize USCI state machine**
IE2 |= UCA0RXIE; // Enable USCI_A0 RX interrupt

P5OUT &= ~0x04; // Now with SPI signals initialized,
P5OUT |= 0x04; // reset slave

for (i = 50; i > 0; i--)
; // Wait for slave to initialize
P2OUT=0x00;

__bis_SR_register(GIE); // enable interrupts

while(1)
{
spi_transmit('A'); // Transmit first character
__delay_cycles(3000000);
spi_transmit('B'); // Transmit first character
__delay_cycles(3000000);
spi_transmit('C'); // Transmit first character
__delay_cycles(3000000);
}
}

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=USCIAB0RX_VECTOR
__interrupt void USCIA0RX_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(USCIAB0RX_VECTOR))) USCIA0RX_ISR (void)
#else
#error Compiler not supported!
#endif
{
volatile unsigned int i;

if (UCA0RXBUF == 'B') // Test for correct character RX'd
{
P2OUT |= 0x02; // If correct, light LED
}
for (i = 30; i > 0; i--)
; // Add time between transmissions to
// make sure slave can keep up
}

char spi_transmit(char data)
{
while (!(IFG2 & UCA0TXIFG)); // USART1 TX buffer ready?
UCA0TXBUF = data; // Send next value
}


Slave:

/* --COPYRIGHT--,BSD_EX
* Copyright (c) 2012, Texas Instruments Incorporated
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* * Neither the name of Texas Instruments Incorporated nor the names of
* its contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS;
* OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
* WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR
* OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE,
* EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
************************************************** *****************************
*
* MSP430 CODE EXAMPLE DISCLAIMER
*
* MSP430 code examples are self-contained low-level programs that typically
* demonstrate a single peripheral function or device feature in a highly
* concise manner. For this the code may rely on the device's power-on default
* register values and settings such as the clock configuration and care must
* be taken when combining code from several examples to avoid potential side
* effects. Also see www.ti.com/grace for a GUI- and www.ti.com/msp430ware
* for an API functional library-approach to peripheral configuration.
*
* --/COPYRIGHT--*/
//************************************************** ****************************
// MSP430F54x Demo - USCI_A0, SPI 3-Wire Slave Data Echo
//
// Description: SPI slave talks to SPI master using 3-wire mode. Data received
// from master is echoed back.
// ACLK = 32.768kHz, MCLK = SMCLK = DCO ~ 1MHz
// Note: Ensure slave is powered up before master to prevent delays due to
// slave init.
//
//
// MSP430FR5739
// -----------------
// /|\ | |
// | | |
// -+->| |
// | |
// | P2.0|-> Data Out (UCA0SIMO)
// | |
// | P2.1|<- Data In (UCA0SOMI)
// | |
// | P1.5|-> Serial Clock Out (UCA0CLK)
//
//
// P. Thanigai
// Texas Instruments Inc.
// August 2010
// Built with CCS V4 and IAR Embedded Workbench Version: 5.10
//************************************************** ****************************
#include <msp430.h>

int main(void)
{
WDTCTL = WDTPW+WDTHOLD; // Stop watchdog timer
// Configure XT1
PJSEL0 |= BIT4+BIT5;

CSCTL0_H = 0xA5;
CSCTL1 |= DCOFSEL0 + DCOFSEL1; // Set max. DCO setting
CSCTL2 = SELA_0 + SELS_3 + SELM_3; // set ACLK = XT1; MCLK = DCO
CSCTL3 = DIVA_0 + DIVS_3 + DIVM_3; // set all dividers
CSCTL4 |= XT1DRIVE_0;
CSCTL4 &= ~XT1OFF;
do
{
CSCTL5 &= ~XT1OFFG;
// Clear XT1 fault flag
SFRIFG1 &= ~OFIFG;
}while (SFRIFG1&OFIFG); // Test oscillator fault flag
// Configure SPI pins
P1SEL1 |= BIT5;
P2SEL1 |= BIT0 + BIT1;


UCA0CTLW0 |= UCSWRST; // **Put state machine in reset**
UCA0CTLW0 |= UCSYNC+UCCKPL+UCMSB; // 3-pin, 8-bit SPI slave
// Clock polarity high, MSB
UCA0CTLW0 |= UCSSEL_2; // ACLK
UCA0BR0 = 0x02; // /2
UCA0BR1 = 0; //
UCA0MCTLW = 0; // No modulation
UCA0CTLW0 &= ~UCSWRST; // **Initialize USCI state machine**
UCA0IE |= UCRXIE; // Enable USCI_A0 RX interrupt

__bis_SR_register(LPM0_bits + GIE); // Enter LPM0, enable interrupts



}

#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=USCI_A0_VECTOR
__interrupt void USCI_A0_ISR(void)
#elif defined(__GNUC__)
void __attribute__ ((interrupt(USCI_A0_VECTOR))) USCI_A0_ISR (void)
#else
#error Compiler not supported!
#endif
{
while (!(UCA0IFG&UCTXIFG)); // USCI_A0 TX buffer ready?
UCA0TXBUF = UCA0RXBUF; // Echo received data
}

Ich weiß, dass das SPI Verfahren vollduplex ist, ich empfange also direkt etwas vom Slave, wenn ich gleichzeitig auch was schicke. Ich schicke kontonuirlich 'A', 'B', 'C' und wenn der Master 'B' empfängt sollte die orangene LED leuchten. Ich schicke also 'A', empfange irgendwas, das was zu allererst im Sendebuffer des Slave ist. Ich schicke 'B' und empfange 'A', und so weiter. Aber spätestens im zweiten Zyklus sollte ich, wenn ich 'C' schicken das vorangegangene 'B' empfangen, oder? Die LED leuchtet nie, wenn ich beide Boards flashe. Auch interessant, wenn ich das Masterboard von der Versorgung hole, powert sich über die Busleitungen des anderen Boards und da kann es manchmal passieren, dass die LED leuchtet???

Muss beim SPI beide Boards mit derselben Versorgung betrieben werden wie das Masterboard?

Danke für jede Anregung!

lg Ethernut

PICture
01.09.2015, 14:17
Hallo!


Ich weiß, dass das SPI Verfahren vollduplex ist, ich empfange also direkt etwas vom Slave, wenn ich gleichzeitig auch was schicke.

Nicht immer, weil es u.a. von deiner bisher unbekannter Hardware abhängig ist. Siehe bitte: https://de.wikipedia.org/wiki/Duplex_%28Nachrichtentechnik%29 . ;)

Ethernut
01.09.2015, 14:24
Die Hardware ist nicht unbekannt. Beide µC sind in den Codesnipets beschrieben. Diese Beispiele habe ich aus den individuellen c files aus TI und beide funzen nicht. verstehe nicht was ich falsch mache. in beiden steht fast genau das gleiche...

Holomino
01.09.2015, 20:27
Hallo,
Muss beim SPI beide Boards mit derselben Versorgung betrieben werden wie das Masterboard?

Nein, aber Gnd muss verbunden sein.
Und beide Boards sollten annähernd gleiches Ub verwenden, also 3,3V und 5V nicht ohne Nachdenken/ Pegelanpassen mischen.