PDA

Archiv verlassen und diese Seite im Standarddesign anzeigen : kleines Einmaleins



Flite
20.10.2004, 00:03
Ok - weil die letzte Frage so schnell beantwortet war:

Hier noch eine Kopfnuss zum nachdenken!

Man hat die Zahlen 1-9
1 2 3 4 5 6 7 8 9

Du musst diese Zahlen so ordnen, dass später immer zwei hintereinanderstehende Ziffern ein Produkt aus dem kleinen Einmaleins ergeben.

Z.B.
456 = 45 (5 * 9) 56 = (7 * 8)

Wichtig! Es darf jede Ziffer nur einmal verwendet werden und es müssen alle verwendet werden.

Viel Spaß!
Grüße
Flite

Florian
20.10.2004, 00:06
Verstehe ich nicht! *ggg*

Flite
20.10.2004, 00:10
Also herauskommen muss ein 9 stelliger Code, der alle Ziffern von 1-9 einmal enthält.

Immer zwei Ziffern hintereinander müssen das Ergebnis einer Multiplikation im kleinen Einmaleins sein. Also 1*1 - 9*9

1*10 wäre schon großes Einmal eins.

Noch was unklar?

Grüße
Flite

Florian
20.10.2004, 00:15
Achso!
Nagut, das dürfte ja zu schaffen sein! ;o)

Flite
20.10.2004, 00:17
Nur zu - ich geh mal pennen.

Viel Erfolg!

Grüße
Flite

Florian
20.10.2004, 00:23
Naja, hast Recht, ich gehe auch, trotz Ferien! ;o)

Florian
20.10.2004, 00:42
Ja, ich bins nochmal! *gähn*

Also wenn es um eine Summe ginge wüsste ich es!
Man braucht sich ja nur einen Würfel ansehen!
Die gegenüberliegenden Zahlen ergeben immer 7!
1+6 ; 2+5 ; 3+4 ;
Das wäre dann hier 10:
1+9 ; 2+8 ; 3+7 ; 4+6 ; 5+5 ;

Mit einer Multiplikation ist das ganze allerdings garnicht möglich! *zumindest meiner dummen Meinung nach nicht* *ggg*
Mindestens eine Zahl muss man mit 1 malnehmen.
Daraus Schlussfolgere ich, dass alle Ergebnisse 9 sein müssen.
Das geht allerdings nicht, da die 9 nicht durch zwei verschiedene ganze Zahlen teilbar ist (hat glaube ich nen speziellen Namen, war das Priemzahl?), sondern nur durch die 9, 3 und 1.
Diese Aufgabe ist also unlösbar, meiner Meinung nach!
Lehrt mich eines Besseren! *lol*

Felix G
20.10.2004, 01:39
ich glaub das ist anders gemeint...


also wenn man die Ziffernfolge 125 betrachten würde,
dann könnte man sowohl die ersten beiden als Produkt zweier Zahlen <10 darstellen als auch die zweiten.

also 12 = 2*6 und 25 = 5*5


und gesucht ist jetzt die Ziffernfolge bei der diese Bedingung für alle 8 enthaltenen 2-stelligen Zahlen erfüllt ist.


edit:
das würde z.B. schonmal bedeuten, daß die 9 die letzte Ziffer sein muss,
da 81 das Maximum ist (9*9)

was natürlich auch bedeutet, daß auf die 8,wo auch immer sie steht, die 1 folgen muss

edit2:
ausserdem sind alle Primzahlen > 7 verbotene Ziffernfolgen.
was bedeutet, daß auf die 1 keine 3, 7 oder 9 folgen darf.

ok, nochmal zusammengefasst:
verboten sind
13, 17, 19, 23, 29, 31, 37, 41, 43, 47, >81

die 81 muss vorkommen, und die 9 kann nur an letzter Stelle stehen.


den Rest überlasse ich euch...
ich bin nämlich verdammt müde

cht
20.10.2004, 10:37
728163549
Hatte in der Mathestunde nix besseres zu tun...
mfG

cht

Florian
20.10.2004, 12:00
Und wie kommst Du jetzt auf das Ergebnis? *nichtsmehrpeil*

cht
20.10.2004, 14:09
naja, extrem-knobling halt. Für jede Zahl gibt es nur bestimmte Kombinationsmöglichkeiten. Die 9 steht am Ende, das wurde schon gesagt. Davor passt nur die 4, dann 2, 5 oder 6, wobei man die 2 später für die 7 braucht. Und ab da muss man ausprobieren. Irgendwann ging halt alles.
mfG

cht

Manf
20.10.2004, 14:20
Davor passt nur die 4, dann 2, 5 oder 6,

4, dann 1, 2, 5, oder 6 ... die 1 führt aber nicht zum Ergebnis
Manfred

Taucher
20.10.2004, 17:34
Hä Ich ab immer och nicht verstanden wie das gehen soll.

David

Edit: oder ist das ganze so zu ferstehen 72 28 81 16 63 35 54 49?

Flite
20.10.2004, 17:49
Gratuliere, cht hat Recht.

Das ist die Lösung. Draufkommen kann man eigentlich nur durch systematsiches ausprobieren (und ein bisschen denken).

die 9 muss ganz am Schluss stehen, da es keine Zahl des kleinen Einmaleins gibt, die die 9 vorne stehen hat.

Hierfür kommt dann nur noch die 49 in Frage.

Der Rest ist halt ausprobieren.

FRAGE GELÖST!

Viele Grüße
Flite

PS: @Taucher: Prinzipiell richtig. du schaust immer zwei Ziffern an, also die erste und die zweite, die zweite und die dritte, die dritte und die vierte ...