PDA

Archiv verlassen und diese Seite im Standarddesign anzeigen : Das Wiegeproblem



Taucher
11.10.2004, 16:31
Meine Frage ist: wieviele Gewichte brauch man mindestens um alle ganzzahliege Gewicht von 1 bis 40 kg mit einer Balkenwage zu wiegen?

David

x-ryder
11.10.2004, 17:00
1, 3, 9 und 27 kg = 4 gewichte

Mit dem 1kg Gewicht kann der Bereich von 1kg bis 1kg gewogen werden.

Wenn man das 3kg Gewicht als größtes Gewicht verwendet, kann der Bereich von 3kg - 1kg bis 3kg + 1kg, also von 2kg bis 4kg gewogen werden.

Wenn man das 9kg Gewicht als größtes Gewicht verwendet, kann der Bereich von 9kg - 3kg - 1kg bis 9kg + 3kg + 1kg, also von 5kg bis 13kg gewogen werden.

Wenn man das 27kg Gewicht als größtes Gewicht verwendet, kann der Bereich von 27kg - 9kg - 3kg - 1kg bis 27 + 9kg + 3kg + 1kg, also von 14kg bis 40kg gewogen werden.

MfG
Martin Weinberg

TheOneBeyond
11.10.2004, 17:00
Ich habe jetzt nicht viel drüber nachgedacht.. ich blase jetzt mal in den Raum es sind 6 ...
Einfach geraten, weil 1,2,4,8,16,32 ausm Binärformat alle Integer bis über 40 hinweg darstellen könnten... doof ausgedrückt, ich weiß

Gruss, Sascha

edit: Stimt, X-Ryder, deine Version klint ne Ecke besser :-)

Taucher
11.10.2004, 17:13
Und ich dachte ich hätte ne anspruchsvolle Frage gestellt. Also x-ryder du hast recht. TheOneBeyond sorry aber es sind halt nur vier das liegt darann das wie x-ryder schon geschrieben hat sich die werte auch zum teil aufheben was dazu führt das man zwischen schritte machen kann.

David

TheOneBeyond
12.10.2004, 06:43
Joah... hab ich auch neidvoll anerkannt :-)

Wenn man erstmal nachdenkt bevor man postet kommts oftmals gut :-)