PDA

Archiv verlassen und diese Seite im Standarddesign anzeigen : undefined reference to ...



Bääääär
14.07.2007, 00:26
Hallo!

Ich habe hier ein Programm für die serielle Schnittstelle nur leider kann ich es nicht übersetzen, auch wenn ich allen code rauskommentiere. Es erscheint diese Fehlermeldung:

Linking: main.elf
avr-gcc -mmcu=atmega32 -I. -gdwarf-2 -DF_CPU=16000000UL -Os -funsigned-char -funsigned-bitfields -fpack-struct -fshort-enums -Wall -Wstrict-prototypes -Wa,-adhlns=main.o -std=gnu99 -Wundef -MMD -MP -MF .dep/main.elf.d main.o --output main.elf -Wl,-Map=main.map,--cref -lm
c:/programme/winavr-20070525/bin/../lib/gcc/avr/4.1.2/../../../../avr/lib/avr5/crtm32.o: In function `__vectors':
../../../../../avr-libc-1.4.6/crt1/gcrt1.S:51: undefined reference to `main'
make: *** [main.elf] Error 1

Meine Suchen im Forum ergaben, dass ich vergessen habe eine Datei im Makefile zu linken. Nur welche?
Das ist mein Code:
/////////////////////////////////////////////////////////////////////
// Arios: Serial Interface functions //
/////////////////////////////////////////////////////////////////////
// Author: Johannes Neumann //
// Date of completion: **.**.**** //
/////////////////////////////////////////////////////////////////////


// Defines //////////////////////////////////////////////////////////

#include <avr/interrupt.h>
#include <avr/io.h>
//#include <avr/signal.h>
#include <string.h>
#define cReadBufferSize 32
#define cWriteBufferSize 512
#define cBlockung 1
#define cNonBlocking 0
#define cTXComplete 1;
#define cTXNotComplete 0;

// Variables ////////////////////////////////////////////////////////

volatile unsigned int TXComplete;
volatile unsigned int WritePointer0 = 0, WritePointer1 = 0;
volatile unsigned int ReadPointer0 = 0, ReadPointer1 = 0;
volatile unsigned char ReadBuffer[cReadBufferSize];
volatile unsigned char WriteBuffer[cWriteBufferSize];

// Init /////////////////////////////////////////////////////////////
void RS232_init(long unsigned int baudrate) {
UCSRA = 0x00;
UCSRB = (1 << RXCIE) | (1 << RXEN);
UCSRC = (1 << UCSZ1) | (1 << UCSZ0) | (1 << URSEL);
UBRRH = (((F_CPU/baudrate) >> 4) - 1) >> 8;
UBRRL = (((F_CPU/baudrate) >> 4) - 1) & 0xFF;
TXComplete = cTXComplete;
}


// Send /////////////////////////////////////////////////////////////
int RS232_send(char *c, int blocking) {
int i;
for (i=0; i< strlen(c);i++) {
if ((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2)) {
if (blocking) {
while((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2));
}
else
return i;
}
TXComplete = cTXComplete;
asm("cli");
WriteBuffer[WritePointer1++] = c[i];
if (WritePointer1 > cWriteBufferSize - 1) WritePointer1 = 0;
asm("sei");
UCSRB = (1<<TXEN) | (1<<UDRIE);
}
return i;
}


// Receive //////////////////////////////////////////////////////////
int RS232_receive(char *c, int length, int blocking) {
int i;
for (i=0; i<length; i++) {
if (ReadPointer0 == ReadPointer1) {
if (blocking) while(ReadPointer0 == ReadPointer1);
else return i;
}
c[i] = ReadBuffer[ReadPointer1++];
if (ReadPointer1 > cReadBufferSize - 1) ReadPointer1 = 0;
}
return length;
}


// Complete? ////////////////////////////////////////////////////////
int RS232_WritingComplete(void) {
return TXComplete;
}


// Count of Bytes in ReadBuffer /////////////////////////////////////
int RS232_GetBytesInReadBuffer(void) {
return (cReadBufferSize + ReadPointer1-ReadPointer0) % cReadBufferSize;
}


// Count of Bytes in WriteBuffer ////////////////////////////////////
int RS232_GetBytesInWriteBuffer(void) {
return (cWriteBufferSize + WritePointer1-WritePointer0) % cWriteBufferSize;
}


// Interrupt for Reading ////////////////////////////////////////////
SIGNAL (SIG_UART_RECV) {
ReadBuffer[ReadPointer0++] = UDR;
if (ReadPointer0 > cReadBufferSize) ReadPointer0 = 0;
}


// Interrupt for writing Data into UDR //////////////////////////////
SIGNAL (SIG_UART_DATA) {
UDR = WriteBuffer[WritePointer0++];
if (WritePointer0 < cWriteBufferSize - 1) WritePointer0 = 0;
if (WritePointer0 == WritePointer1) UCSRB = (1<<TXEN) | (1<<TXCIE);
}


// Interrupt for setting Complete-Flag //////////////////////////////
SIGNAL (SIG_UART_TRANS) {
UCSRB = (1<<RXCIE) | (1<<RXEN);
TXComplete = cTXComplete;
}


Danke,
Bääääär

vklaffehn
14.07.2007, 00:32
hmm, ich sehe bei Dir tatsächlich keine main-Funktion, die muß aber in jedem Programm vorhanden sein..
MfG Volker

Sternthaler
14.07.2007, 00:59
Hallo Bääääär,
danke für's abtippen. Bei Arexx gibt es nämlich immer noch keinen Code.

Im übrigen gibt es beim Empfang von Daten einen kleinen Schönheitsfehler mit evl. fatalen Folgen.
(Ich beziehe mich hier auf deine Funktionsnamen und nicht die aus Band II zum Asuro)
Wie stellt die Funktion RS232_receive() fest, dass der Buffer leer ist? Klar, mit "if (ReadPointer0 == ReadPointer1)"
Aber was passiert im Empfangs-Interrupt SIGNAL (SIG_UART_RECV)?
Dort wird der ReadPointer0 gandenlos mit ++ erhöht wenn ein Zeichen ankommt. "ReadBuffer[ReadPointer0++] = UDR;" (Natürlich wieder auf 0 wenn er zu groß wird.)
Wenn man nun genau so viele Zeichen empfängt wie der RX-Buffer groß ist, steht der ReadPointer0 also wieder an der gleichen Position wie der ReadPointer1.
Und was nun? Da ist doch der Buffer leer sagt die RS232_receive()-Funktion!!!


Wenn ich in deinem Code den auskommentierten #include wieder aufnehme und ein #define für F_CPU anlege und ein kleines main so wie:
int main (void)
{
while (1);
return 0;
}
reinschreibe, kann ich fehlerfrei übersetzen.


/////////////////////////////////////////////////////////////////////
// Arios: Serial Interface functions //
/////////////////////////////////////////////////////////////////////
// Author: Johannes Neumann //
// Date of completion: **.**.**** //
/////////////////////////////////////////////////////////////////////

#define F_CPU 8000000

// Defines //////////////////////////////////////////////////////////

#include <avr/interrupt.h>
#include <avr/io.h>
#include <avr/signal.h>
#include <string.h>
#define cReadBufferSize 32
#define cWriteBufferSize 512
#define cBlockung 1
#define cNonBlocking 0
#define cTXComplete 1;
#define cTXNotComplete 0;

// Variables ////////////////////////////////////////////////////////

volatile unsigned int TXComplete;
volatile unsigned int WritePointer0 = 0, WritePointer1 = 0;
volatile unsigned int ReadPointer0 = 0, ReadPointer1 = 0;
volatile unsigned char ReadBuffer[cReadBufferSize];
volatile unsigned char WriteBuffer[cWriteBufferSize];

// Init /////////////////////////////////////////////////////////////
void RS232_init(long unsigned int baudrate) {
UCSRA = 0x00;
UCSRB = (1 << RXCIE) | (1 << RXEN);
UCSRC = (1 << UCSZ1) | (1 << UCSZ0) | (1 << URSEL);
UBRRH = (((F_CPU/baudrate) >> 4) - 1) >> 8;
UBRRL = (((F_CPU/baudrate) >> 4) - 1) & 0xFF;
TXComplete = cTXComplete;
}


// Send /////////////////////////////////////////////////////////////
int RS232_send(char *c, int blocking) {
int i;
for (i=0; i< strlen(c);i++) {
if ((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize > (cWriteBufferSize - 2)) {
if (blocking) {
while((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize > (cWriteBufferSize - 2));
}
else
return i;
}
TXComplete = cTXComplete;
asm("cli");
WriteBuffer[WritePointer1++] = c[i];
if (WritePointer1 > cWriteBufferSize - 1) WritePointer1 = 0;
asm("sei");
UCSRB = (1<<TXEN) | (1<<UDRIE);
}
return i;
}


// Receive //////////////////////////////////////////////////////////
int RS232_receive(char *c, int length, int blocking) {
int i;
for (i=0; i<length; i++) {
if (ReadPointer0 == ReadPointer1) {
if (blocking) while(ReadPointer0 == ReadPointer1);
else return i;
}
c[i] = ReadBuffer[ReadPointer1++];
if (ReadPointer1 > cReadBufferSize - 1) ReadPointer1 = 0;
}
return length;
}


// Complete? ////////////////////////////////////////////////////////
int RS232_WritingComplete(void) {
return TXComplete;
}


// Count of Bytes in ReadBuffer /////////////////////////////////////
int RS232_GetBytesInReadBuffer(void) {
return (cReadBufferSize + ReadPointer1-ReadPointer0) % cReadBufferSize;
}


// Count of Bytes in WriteBuffer ////////////////////////////////////
int RS232_GetBytesInWriteBuffer(void) {
return (cWriteBufferSize + WritePointer1-WritePointer0) % cWriteBufferSize;
}


// Interrupt for Reading ////////////////////////////////////////////
SIGNAL (SIG_UART_RECV) {
ReadBuffer[ReadPointer0++] = UDR;
if (ReadPointer0 > cReadBufferSize) ReadPointer0 = 0;
}


// Interrupt for writing Data into UDR //////////////////////////////
SIGNAL (SIG_UART_DATA) {
UDR = WriteBuffer[WritePointer0++];
if (WritePointer0 < cWriteBufferSize - 1) WritePointer0 = 0;
if (WritePointer0 == WritePointer1) UCSRB = (1<<TXEN) | (1<<TXCIE);
}


// Interrupt for setting Complete-Flag //////////////////////////////
SIGNAL (SIG_UART_TRANS) {
UCSRB = (1<<RXCIE) | (1<<RXEN);
TXComplete = cTXComplete;
}

int main (void)
{
while (1);
return 0;
}


Hast du im Makefile das
SRC += asuro.c
auskommentiert? Ist bei mir aber egal. Es geht in beiden Fällen.

Bääääär
14.07.2007, 09:03
Ich habe ein komplette neues Makefile gemacht.
Stimmt, du hast Recht. Er muss das Empfangen abbrechen, wenn blocking nicht ktiviert ist. Macht er aber bis jetzt nicht. Dann hat das Buch Band II aber auch diesen netten Fehler. Die Funktion sollte dann wohl so aussehen:

// Receive //////////////////////////////////////////////////////////
int RS232_receive(char *c, int length, int blocking) {
int i;
for (i=0; i<length; i++) {
if (ReadPointer0 == ReadPointer1) {
if (blocking) while(ReadPointer0 == ReadPointer1);
else {
return i;
abort;
}
}
c[i] = ReadBuffer[ReadPointer1++];
if (ReadPointer1 > cReadBufferSize - 1) ReadPointer1 = 0;
}
return length;
}
Damit nicht weiter empfangen wird, wird die Funktion abgebrochen. Fertsch. So sollte es doch gehen.

Warum eine main Funktion? Das Macht doch keinen Sinn. Es handelt sich dabei um ein Modul. Und dafür braucht man doch keine Main Funktion. Einen Header muss ich noch machen, vielleicht gehts ja dann auch...

Danke,
Bääääär

//EDIT: Ich habe grade festgestellt, dass es kein abort; gibt. Was könnte man sonst nehmen?

Bääääär
14.07.2007, 11:24
Eventuell so?


// Send /////////////////////////////////////////////////////////////
int RS232_send(char *c, int length, int blocking) {
int i=0;
for (i=0; i < length;i++) {
if ((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2)) {
if (blocking) {
while((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2));
}
else {
goto End;
}
}
TXComplete = cTXComplete;
asm("cli");
WriteBuffer[WritePointer1++] = c[i];
if (WritePointer1 > cWriteBufferSize - 1) WritePointer1 = 0;
asm("sei");
UCSRB = (1<<TXEN) | (1<<UDRIE);
}
End:return i;
}

fluchtpunkt
14.07.2007, 12:36
warum schmeisst du das "abort;" nicht einfach raus, nach return i; wird eh nix mehr aus dieser Funktion ausgefuehrt.

Und wo ist der Sinn anstatt return i; zu schreiben einen Sprung zu machen um dann return i; auszufuehren?

Sternthaler
14.07.2007, 14:25
Hallo Bääääär,
oh je, du möchtest also nur ein Modul schreiben. Dann glaube ich, dass in deinem Makefile noch etwas nicht in Ordnung ist. Bis jetzt macht es auf alle Fälle ein 'normales' Hex-File, und das benötigt ein main() (ging ja bei mir). Genau dies wird auch im Band II beschrieben, aber tatsächlich mit mehreren C-Dateien. Wobei aber trotzdem in genau einer Datei das main() drinn stecken muss.
Möglicherweise hast du da einen 'kleinen' aber wichtigen Unterschied zum Muster aus dem Band II übersehen.

Wenn du so etwas wie die Forum-LIB zum Asuro machen möchtest sind 'etwas' andere Befehle im Makefile auszuführen.


Ob dein Code für eine funktionierende Empfangsfunktion gut ist, habe ich mir jetzt noch nicht genau angesehn.
Keine Aussage ;-)

Mit einem Goto geht es schon, aber da hat fluchtpunkt irgendwie recht, dass das nicht so schön ist.
Was (meiner Meinung) dafür spricht ist, dass eine 'Endebehandlung' dann aber nur genau einmal geschrieben werden muss. OK, hier ist nur das return vorhanden, aber manchmal muss da etwas mehr hin, und dann braucht man immer nur an genau einer Stelle Fehler zu korrigieren.

Im Übrigen kannst du ein break; benutzen. Dies bricht genau eine loopende Eben, also bei dir die For-Schleife ab.

Bääääär
17.07.2007, 13:55
@fluchtpunkt: Achso, mir war nicht klar, dass nach return; Schluss ist mit der entsprechenden Funktion. Dann hast du natürlich Recht.

@Sternthaler: Ja, mit Main() gehts auch. Vielleicht kannst du mir bei Gelegenheit erklären, wie man ein korrektes Modul macht. Für mich ist C eine komplette Neuheit, ich bin es von Borland Delphi gewöhnt, dass es reicht eine Quelltextdatei zu includieren und dass sich der Compiler dann um das Linken kümmert. Hier scheint das alles etwas verzweigter (+verzwickter) zu sein :-s

@all: Bevor ich das jetzt korrekt machen kann, sollten aber erstmal die Funktionen gehen. Tun sie aber noch nicht. Meine RS232_send sendet immer nur das erste Zeichen eines Strings und die Empfangsfunktion kann ich noch nicht testen, solange das Senden nicht geht. Vielleicht findet jemand den Fehler, ich finde ihn nicht. K.A. ob es schon am Befüllen des Buffers liegt oder am Senden. Ich kann mir ja nichts ausgeben lassen...

hmm. Mal Sehen. Danke erstmal für eure Hilfe!

Bääääär

Sternthaler
17.07.2007, 18:08
Hallo Bääääär,
da du die Sendefunktion RS232_send() ja (bestimmt) aus Band II hast, kann es auch noch am Aufruf dieser Funktion liegen.
Stellt du bitte nochmal das komplette Programm hier zur Verfügung.

Bääääär
17.07.2007, 22:12
Oki. Also ich glaube wir verstehen auch was verschiedenes unter "Modul" ich meinte eins wie es im Buch beschrieben ist, und das muss man ja auch gar nicht compillieren... ](*,) .

Hier ist der Code von serial.h:

#ifndef _SERIAL_H
#define _SERIAL_H

#define cReadBufferSize 32 // Size of ReadBuffer
#define cWriteBufferSize 128 // Size of WriteBuffer
#define cBlockung 1
#define cNonBlocking 0
#define cTXComplete 1
#define cTXNotComplete 0


#include "Serial\serial.c"

void RS232_init(long unsigned int baudrate);

int RS232_send(char *c, int length, int blocking);

int RS232_receive(char *c, int length, int blocking);

int RS232_WritingComplete(void);

int RS232_GetBytesInReadBuffer(void);

int RS232_GetBytesInWriteBuffer(void);

int RS232_GetWriteBufferSize(void);

int RS232_GetReadBufferSize(void);

int RS232_ReadBufferClear(void);

int RS232_WriteBufferClear(void);

#endif

Das ist der Code von "Serial\serial.c":
/////////////////////////////////////////////////////////////////////
// Arios: Serial Interface functions //
/////////////////////////////////////////////////////////////////////
// Author: Johannes Neumann //
// Date of completion: **.**.**** //
/////////////////////////////////////////////////////////////////////


// Defines //////////////////////////////////////////////////////////

#include <avr/interrupt.h>
#include <avr/io.h>

// Variables ////////////////////////////////////////////////////////

volatile unsigned int TXComplete;
volatile unsigned int WritePointer0 = 0, WritePointer1 = 0;
volatile unsigned int ReadPointer0 = 0, ReadPointer1 = 0;
volatile unsigned char ReadBuffer[cReadBufferSize];
volatile unsigned char WriteBuffer[cWriteBufferSize];

// Init /////////////////////////////////////////////////////////////
void RS232_init(long unsigned int baudrate) {
UCSRA = 0x00;
UCSRB = (1 << RXCIE) | (1 << RXEN);
UCSRC = (1 << UCSZ1) | (1 << UCSZ0) | (1 << URSEL);
UBRRH = (((F_CPU/baudrate) >> 4) - 1) >> 8;
UBRRL = (((F_CPU/baudrate) >> 4) - 1) & 0xFF;
TXComplete = cTXComplete;
}


// Send /////////////////////////////////////////////////////////////
int RS232_send(char *c, int length, int blocking) {
int i=0;
for (i=0; i < length; i++) {
if ((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2)) {
if (blocking) {
while((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2));
}
else return i;
}
TXComplete = cTXNotComplete;
asm("cli");
WriteBuffer[WritePointer1++] = c[i];
if (WritePointer1 > cWriteBufferSize - 1) WritePointer1 = 0;
asm("sei");
UCSRB = (1<<TXEN) | (1<<UDRIE);
}
return i;
}


// Receive //////////////////////////////////////////////////////////
int RS232_receive(char *c, int length, int blocking) {
int i;
TXComplete = cTXNotComplete;
for (i=0; i<length; i++) {
if (ReadPointer0 == ReadPointer1) {
if (blocking) while(ReadPointer0 == ReadPointer1);
else return i;
}
c[i] = ReadBuffer[ReadPointer1++];
if (ReadPointer1 > cReadBufferSize - 1) ReadPointer1 = 0;
}
return length;
}


// Complete? ////////////////////////////////////////////////////////
int RS232_WritingComplete(void) {
return TXComplete;
}


// Count of Bytes in ReadBuffer /////////////////////////////////////
int RS232_GetBytesInReadBuffer(void) {
return (cReadBufferSize + ReadPointer1-ReadPointer0) % cReadBufferSize;
}


// Count of Bytes in WriteBuffer ////////////////////////////////////
int RS232_GetBytesInWriteBuffer(void) {
return (cWriteBufferSize + WritePointer1-WritePointer0) % cWriteBufferSize;
}


// Return WriteBufferSize ///////////////////////////////////////////
int RS232_GetWriteBufferSize(void) {
return cWriteBufferSize;
}


// Return ReadBufferSize ////////////////////////////////////////////
int RS232_GetReadBufferSize(void) {
return cReadBufferSize;
}


// Return if ReadBuffer ist Empty ///////////////////////////////////
int RS232_ReadBufferClear(void) {
// kommt noch...
}


// Return if WriteBuffer ist Empty //////////////////////////////////
int RS232_WriteBufferClear(void) {
// kommt noch...
}

// Interrupt for Reading ////////////////////////////////////////////
SIGNAL (SIG_USART_RECV) {
ReadBuffer[ReadPointer0++] = UDR;
if (ReadPointer0 > cReadBufferSize) ReadPointer0 = 0;
}


// Interrupt for writing Data into UDR //////////////////////////////
SIGNAL (SIG_USART_DATA) {
UDR = WriteBuffer[WritePointer0++];
//printf(WriteBuffer[WritePointer0++]);
if (WritePointer0 < cWriteBufferSize - 1) WritePointer0 = 0;
if (WritePointer0 == WritePointer1) UCSRB = (1<<TXEN) | (1<<TXCIE);
}


// Interrupt for setting Complete-Flag //////////////////////////////
SIGNAL (SIG_USART_TRANS) {
UCSRB = (1<<RXCIE) | (1<<RXEN);
TXComplete = cTXComplete;
}

Und das ist mein Programm:
#include <Arios\serial.h>
#include <stdio.h>

int main (void) {
int i=0;
RS232_init(9600);
RS232_send("Hallo Welt!\n\r", 14, cNonBlocking);
return 0;
}


Obwohl ich nur einmal sende, wird unendlich mal ein "H" gesendet. (also der erste Buchstabe des Strings). Es muss also irgendwas mit den Interrupts zu tun haben.

Sorry, ich hatte oben vergessen, den Code beizufügen... ](*,)

Vielen Dank,
Bääääär

Bääääär
17.07.2007, 22:27
Achso: Mein Makefile:
# Hey Emacs, this is a -*- makefile -*-
#----------------------------------------------------------------------------
# WinAVR Makefile Template written by Eric B. Weddington, Jörg Wunsch, et al.
#
# Released to the Public Domain
#
# Additional material for this makefile was written by:
# Peter Fleury
# Tim Henigan
# Colin O'Flynn
# Reiner Patommel
# Markus Pfaff
# Sander Pool
# Frederik Rouleau
# Carlos Lamas
#
#----------------------------------------------------------------------------
# On command line:
#
# make all = Make software.
#
# make clean = Clean out built project files.
#
# make coff = Convert ELF to AVR COFF.
#
# make extcoff = Convert ELF to AVR Extended COFF.
#
# make program = Download the hex file to the device, using avrdude.
# Please customize the avrdude settings below first!
#
# make debug = Start either simulavr or avarice as specified for debugging,
# with avr-gdb or avr-insight as the front end for debugging.
#
# make filename.s = Just compile filename.c into the assembler code only.
#
# make filename.i = Create a preprocessed source file for use in submitting
# bug reports to the GCC project.
#
# To rebuild project do "make clean" then "make all".
#----------------------------------------------------------------------------


# MCU name
MCU = atmega32


# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
# Typical values are:
# F_CPU = 1000000
# F_CPU = 1843200
# F_CPU = 2000000
# F_CPU = 3686400
# F_CPU = 4000000
# F_CPU = 7372800
# F_CPU = 8000000
# F_CPU = 11059200
# F_CPU = 14745600
# F_CPU = 16000000
# F_CPU = 18432000
# F_CPU = 20000000
F_CPU = 16000000


# Output format. (can be srec, ihex, binary)
FORMAT = ihex


# Target file name (without extension).
TARGET = main


# Object files directory
# To put object files in current directory, use a dot (.), do NOT make
# this an empty or blank macro!
OBJDIR = .


# List C source files here. (C dependencies are automatically generated.)
SRC = $(TARGET).c


# List C++ source files here. (C dependencies are automatically generated.)
CPPSRC =


# List Assembler source files here.
# Make them always end in a capital .S. Files ending in a lowercase .s
# will not be considered source files but generated files (assembler
# output from the compiler), and will be deleted upon "make clean"!
# Even though the DOS/Win* filesystem matches both .s and .S the same,
# it will preserve the spelling of the filenames, and gcc itself does
# care about how the name is spelled on its command-line.
ASRC =


# Optimization level, can be [0, 1, 2, 3, s].
# 0 = turn off optimization. s = optimize for size.
# (Note: 3 is not always the best optimization level. See avr-libc FAQ.)
OPT = s


# Debugging format.
# Native formats for AVR-GCC's -g are dwarf-2 [default] or stabs.
# AVR Studio 4.10 requires dwarf-2.
# AVR [Extended] COFF format requires stabs, plus an avr-objcopy run.
DEBUG = dwarf-2


# List any extra directories to look for include files here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRAINCDIRS =


# Compiler flag to set the C Standard level.
# c89 = "ANSI" C
# gnu89 = c89 plus GCC extensions
# c99 = ISO C99 standard (not yet fully implemented)
# gnu99 = c99 plus GCC extensions
CSTANDARD = -std=gnu99


# Place -D or -U options here for C sources
CDEFS = -DF_CPU=$(F_CPU)UL


# Place -D or -U options here for ASM sources
ADEFS = -DF_CPU=$(F_CPU)


# Place -D or -U options here for C++ sources
CPPDEFS = -DF_CPU=$(F_CPU)UL
#CPPDEFS += -D__STDC_LIMIT_MACROS
#CPPDEFS += -D__STDC_CONSTANT_MACROS



#---------------- Compiler Options C ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CFLAGS = -g$(DEBUG)
CFLAGS += $(CDEFS)
CFLAGS += -O$(OPT)
CFLAGS += -funsigned-char
CFLAGS += -funsigned-bitfields
CFLAGS += -fpack-struct
CFLAGS += -fshort-enums
CFLAGS += -Wall
CFLAGS += -Wstrict-prototypes
#CFLAGS += -mshort-calls
#CFLAGS += -fno-unit-at-a-time
#CFLAGS += -Wundef
#CFLAGS += -Wunreachable-code
#CFLAGS += -Wsign-compare
CFLAGS += -Wa,-adhlns=$(<:%.c=$(OBJDIR)/%.lst)
CFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
CFLAGS += $(CSTANDARD)


#---------------- Compiler Options C++ ----------------
# -g*: generate debugging information
# -O*: optimization level
# -f...: tuning, see GCC manual and avr-libc documentation
# -Wall...: warning level
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns...: create assembler listing
CPPFLAGS = -g$(DEBUG)
CPPFLAGS += $(CPPDEFS)
CPPFLAGS += -O$(OPT)
CPPFLAGS += -funsigned-char
CPPFLAGS += -funsigned-bitfields
CPPFLAGS += -fpack-struct
CPPFLAGS += -fshort-enums
CPPFLAGS += -fno-exceptions
CPPFLAGS += -Wall
CFLAGS += -Wundef
#CPPFLAGS += -mshort-calls
#CPPFLAGS += -fno-unit-at-a-time
#CPPFLAGS += -Wstrict-prototypes
#CPPFLAGS += -Wunreachable-code
#CPPFLAGS += -Wsign-compare
CPPFLAGS += -Wa,-adhlns=$(<:%.cpp=$(OBJDIR)/%.lst)
CPPFLAGS += $(patsubst %,-I%,$(EXTRAINCDIRS))
#CPPFLAGS += $(CSTANDARD)


#---------------- Assembler Options ----------------
# -Wa,...: tell GCC to pass this to the assembler.
# -adhlns: create listing
# -gstabs: have the assembler create line number information; note that
# for use in COFF files, additional information about filenames
# and function names needs to be present in the assembler source
# files -- see avr-libc docs [FIXME: not yet described there]
# -listing-cont-lines: Sets the maximum number of continuation lines of hex
# dump that will be displayed for a given single line of source input.
ASFLAGS = $(ADEFS) -Wa,-adhlns=$(<:%.S=$(OBJDIR)/%.lst),-gstabs,--listing-cont-lines=100


#---------------- Library Options ----------------
# Minimalistic printf version
PRINTF_LIB_MIN = -Wl,-u,vfprintf -lprintf_min

# Floating point printf version (requires MATH_LIB = -lm below)
PRINTF_LIB_FLOAT = -Wl,-u,vfprintf -lprintf_flt

# If this is left blank, then it will use the Standard printf version.
PRINTF_LIB =
#PRINTF_LIB = $(PRINTF_LIB_MIN)
#PRINTF_LIB = $(PRINTF_LIB_FLOAT)


# Minimalistic scanf version
SCANF_LIB_MIN = -Wl,-u,vfscanf -lscanf_min

# Floating point + %[ scanf version (requires MATH_LIB = -lm below)
SCANF_LIB_FLOAT = -Wl,-u,vfscanf -lscanf_flt

# If this is left blank, then it will use the Standard scanf version.
SCANF_LIB =
#SCANF_LIB = $(SCANF_LIB_MIN)
#SCANF_LIB = $(SCANF_LIB_FLOAT)


MATH_LIB = -lm


# List any extra directories to look for libraries here.
# Each directory must be seperated by a space.
# Use forward slashes for directory separators.
# For a directory that has spaces, enclose it in quotes.
EXTRALIBDIRS =



#---------------- External Memory Options ----------------

# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# used for variables (.data/.bss) and heap (malloc()).
#EXTMEMOPTS = -Wl,-Tdata=0x801100,--defsym=__heap_end=0x80ffff

# 64 KB of external RAM, starting after internal RAM (ATmega128!),
# only used for heap (malloc()).
#EXTMEMOPTS = -Wl,--section-start,.data=0x801100,--defsym=__heap_end=0x80ffff

EXTMEMOPTS =



#---------------- Linker Options ----------------
# -Wl,...: tell GCC to pass this to linker.
# -Map: create map file
# --cref: add cross reference to map file
LDFLAGS = -Wl,-Map=$(TARGET).map,--cref
LDFLAGS += $(EXTMEMOPTS)
LDFLAGS += $(patsubst %,-L%,$(EXTRALIBDIRS))
LDFLAGS += $(PRINTF_LIB) $(SCANF_LIB) $(MATH_LIB)
#LDFLAGS += -T linker_script.x



#---------------- Programming Options (avrdude) ----------------

# Programming hardware: alf avr910 avrisp bascom bsd
# dt006 pavr picoweb pony-stk200 sp12 stk200 stk500
#
# Type: avrdude -c ?
# to get a full listing.
#
AVRDUDE_PROGRAMMER = pony-stk200

# com1 = serial port. Use lpt1 to connect to parallel port.
AVRDUDE_PORT = lpt1

AVRDUDE_WRITE_FLASH = -U flash:w:$(TARGET).hex
#AVRDUDE_WRITE_EEPROM = -U eeprom:w:$(TARGET).eep


# Uncomment the following if you want avrdude's erase cycle counter.
# Note that this counter needs to be initialized first using -Yn,
# see avrdude manual.
#AVRDUDE_ERASE_COUNTER = -y

# Uncomment the following if you do /not/ wish a verification to be
# performed after programming the device.
#AVRDUDE_NO_VERIFY = -V

# Increase verbosity level. Please use this when submitting bug
# reports about avrdude. See <http://savannah.nongnu.org/projects/avrdude>
# to submit bug reports.
#AVRDUDE_VERBOSE = -v -v

AVRDUDE_FLAGS = -p $(MCU) -P $(AVRDUDE_PORT) -c $(AVRDUDE_PROGRAMMER)
AVRDUDE_FLAGS += $(AVRDUDE_NO_VERIFY)
AVRDUDE_FLAGS += $(AVRDUDE_VERBOSE)
AVRDUDE_FLAGS += $(AVRDUDE_ERASE_COUNTER)



#---------------- Debugging Options ----------------

# For simulavr only - target MCU frequency.
DEBUG_MFREQ = $(F_CPU)

# Set the DEBUG_UI to either gdb or insight.
# DEBUG_UI = gdb
DEBUG_UI = insight

# Set the debugging back-end to either avarice, simulavr.
DEBUG_BACKEND = avarice
#DEBUG_BACKEND = simulavr

# GDB Init Filename.
GDBINIT_FILE = __avr_gdbinit

# When using avarice settings for the JTAG
JTAG_DEV = /dev/com1

# Debugging port used to communicate between GDB / avarice / simulavr.
DEBUG_PORT = 4242

# Debugging host used to communicate between GDB / avarice / simulavr, normally
# just set to localhost unless doing some sort of crazy debugging when
# avarice is running on a different computer.
DEBUG_HOST = localhost



#================================================= ===========================


# Define programs and commands.
SHELL = sh
CC = avr-gcc
OBJCOPY = avr-objcopy
OBJDUMP = avr-objdump
SIZE = avr-size
AR = avr-ar rcs
NM = avr-nm
AVRDUDE = avrdude
REMOVE = rm -f
REMOVEDIR = rm -rf
COPY = cp
WINSHELL = cmd


# Define Messages
# English
MSG_ERRORS_NONE = Errors: none
MSG_BEGIN = -------- begin --------
MSG_END = -------- end --------
MSG_SIZE_BEFORE = Size before:
MSG_SIZE_AFTER = Size after:
MSG_COFF = Converting to AVR COFF:
MSG_EXTENDED_COFF = Converting to AVR Extended COFF:
MSG_FLASH = Creating load file for Flash:
MSG_EEPROM = Creating load file for EEPROM:
MSG_EXTENDED_LISTING = Creating Extended Listing:
MSG_SYMBOL_TABLE = Creating Symbol Table:
MSG_LINKING = Linking:
MSG_COMPILING = Compiling C:
MSG_COMPILING_CPP = Compiling C++:
MSG_ASSEMBLING = Assembling:
MSG_CLEANING = Cleaning project:
MSG_CREATING_LIBRARY = Creating library:




# Define all object files.
OBJ = $(SRC:%.c=$(OBJDIR)/%.o) $(CPPSRC:%.cpp=$(OBJDIR)/%.o) $(ASRC:%.S=$(OBJDIR)/%.o)

# Define all listing files.
LST = $(SRC:%.c=$(OBJDIR)/%.lst) $(CPPSRC:%.cpp=$(OBJDIR)/%.lst) $(ASRC:%.S=$(OBJDIR)/%.lst)


# Compiler flags to generate dependency files.
GENDEPFLAGS = -MMD -MP -MF .dep/$(@F).d


# Combine all necessary flags and optional flags.
# Add target processor to flags.
ALL_CFLAGS = -mmcu=$(MCU) -I. $(CFLAGS) $(GENDEPFLAGS)
ALL_CPPFLAGS = -mmcu=$(MCU) -I. -x c++ $(CPPFLAGS) $(GENDEPFLAGS)
ALL_ASFLAGS = -mmcu=$(MCU) -I. -x assembler-with-cpp $(ASFLAGS)





# Default target.
all: begin gccversion sizebefore build sizeafter end

# Change the build target to build a HEX file or a library.
build: elf hex eep lss sym
#build: lib


elf: $(TARGET).elf
hex: $(TARGET).hex
eep: $(TARGET).eep
lss: $(TARGET).lss
sym: $(TARGET).sym
LIBNAME=lib$(TARGET).a
lib: $(LIBNAME)



# Eye candy.
# AVR Studio 3.x does not check make's exit code but relies on
# the following magic strings to be generated by the compile job.
begin:
@echo
@echo $(MSG_BEGIN)

end:
@echo $(MSG_END)
@echo


# Display size of file.
HEXSIZE = $(SIZE) --target=$(FORMAT) $(TARGET).hex
ELFSIZE = $(SIZE) --mcu=$(MCU) --format=avr $(TARGET).elf

sizebefore:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_BEFORE); $(ELFSIZE); \
2>/dev/null; echo; fi

sizeafter:
@if test -f $(TARGET).elf; then echo; echo $(MSG_SIZE_AFTER); $(ELFSIZE); \
2>/dev/null; echo; fi



# Display compiler version information.
gccversion :
@$(CC) --version



# Program the device.
program: $(TARGET).hex $(TARGET).eep
$(AVRDUDE) $(AVRDUDE_FLAGS) $(AVRDUDE_WRITE_FLASH) $(AVRDUDE_WRITE_EEPROM)


# Generate avr-gdb config/init file which does the following:
# define the reset signal, load the target file, connect to target, and set
# a breakpoint at main().
gdb-config:
@$(REMOVE) $(GDBINIT_FILE)
@echo define reset >> $(GDBINIT_FILE)
@echo SIGNAL SIGHUP >> $(GDBINIT_FILE)
@echo end >> $(GDBINIT_FILE)
@echo file $(TARGET).elf >> $(GDBINIT_FILE)
@echo target remote $(DEBUG_HOST):$(DEBUG_PORT) >> $(GDBINIT_FILE)
ifeq ($(DEBUG_BACKEND),simulavr)
@echo load >> $(GDBINIT_FILE)
endif
@echo break main >> $(GDBINIT_FILE)

debug: gdb-config $(TARGET).elf
ifeq ($(DEBUG_BACKEND), avarice)
@echo Starting AVaRICE - Press enter when "waiting to connect" message displays.
@$(WINSHELL) /c start avarice --jtag $(JTAG_DEV) --erase --program --file \
$(TARGET).elf $(DEBUG_HOST):$(DEBUG_PORT)
@$(WINSHELL) /c pause

else
@$(WINSHELL) /c start simulavr --gdbserver --device $(MCU) --clock-freq \
$(DEBUG_MFREQ) --port $(DEBUG_PORT)
endif
@$(WINSHELL) /c start avr-$(DEBUG_UI) --command=$(GDBINIT_FILE)




# Convert ELF to COFF for use in debugging / simulating in AVR Studio or VMLAB.
COFFCONVERT = $(OBJCOPY) --debugging
COFFCONVERT += --change-section-address .data-0x800000
COFFCONVERT += --change-section-address .bss-0x800000
COFFCONVERT += --change-section-address .noinit-0x800000
COFFCONVERT += --change-section-address .eeprom-0x810000



coff: $(TARGET).elf
@echo
@echo $(MSG_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-avr $< $(TARGET).cof


extcoff: $(TARGET).elf
@echo
@echo $(MSG_EXTENDED_COFF) $(TARGET).cof
$(COFFCONVERT) -O coff-ext-avr $< $(TARGET).cof



# Create final output files (.hex, .eep) from ELF output file.
%.hex: %.elf
@echo
@echo $(MSG_FLASH) $@
$(OBJCOPY) -O $(FORMAT) -R .eeprom $< $@

%.eep: %.elf
@echo
@echo $(MSG_EEPROM) $@
-$(OBJCOPY) -j .eeprom --set-section-flags=.eeprom="alloc,load" \
--change-section-lma .eeprom=0 --no-change-warnings -O $(FORMAT) $< $@ || exit 0

# Create extended listing file from ELF output file.
%.lss: %.elf
@echo
@echo $(MSG_EXTENDED_LISTING) $@
$(OBJDUMP) -h -S $< > $@

# Create a symbol table from ELF output file.
%.sym: %.elf
@echo
@echo $(MSG_SYMBOL_TABLE) $@
$(NM) -n $< > $@



# Create library from object files.
.SECONDARY : $(TARGET).a
.PRECIOUS : $(OBJ)
%.a: $(OBJ)
@echo
@echo $(MSG_CREATING_LIBRARY) $@
$(AR) $@ $(OBJ)


# Link: create ELF output file from object files.
.SECONDARY : $(TARGET).elf
.PRECIOUS : $(OBJ)
%.elf: $(OBJ)
@echo
@echo $(MSG_LINKING) $@
$(CC) $(ALL_CFLAGS) $^ --output $@ $(LDFLAGS)


# Compile: create object files from C source files.
$(OBJDIR)/%.o : %.c
@echo
@echo $(MSG_COMPILING) $<
$(CC) -c $(ALL_CFLAGS) $< -o $@


# Compile: create object files from C++ source files.
$(OBJDIR)/%.o : %.cpp
@echo
@echo $(MSG_COMPILING_CPP) $<
$(CC) -c $(ALL_CPPFLAGS) $< -o $@


# Compile: create assembler files from C source files.
%.s : %.c
$(CC) -S $(ALL_CFLAGS) $< -o $@


# Compile: create assembler files from C++ source files.
%.s : %.cpp
$(CC) -S $(ALL_CPPFLAGS) $< -o $@


# Assemble: create object files from assembler source files.
$(OBJDIR)/%.o : %.S
@echo
@echo $(MSG_ASSEMBLING) $<
$(CC) -c $(ALL_ASFLAGS) $< -o $@


# Create preprocessed source for use in sending a bug report.
%.i : %.c
$(CC) -E -mmcu=$(MCU) -I. $(CFLAGS) $< -o $@


# Target: clean project.
clean: begin clean_list end

clean_list :
@echo
@echo $(MSG_CLEANING)
$(REMOVE) $(TARGET).hex
$(REMOVE) $(TARGET).eep
$(REMOVE) $(TARGET).cof
$(REMOVE) $(TARGET).elf
$(REMOVE) $(TARGET).map
$(REMOVE) $(TARGET).sym
$(REMOVE) $(TARGET).lss
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.o)
$(REMOVE) $(SRC:%.c=$(OBJDIR)/%.lst)
$(REMOVE) $(SRC:.c=.s)
$(REMOVE) $(SRC:.c=.d)
$(REMOVE) $(SRC:.c=.i)
$(REMOVEDIR) .dep


# Create object files directory
$(shell mkdir $(OBJDIR) 2>/dev/null)


# Include the dependency files.
-include $(shell mkdir .dep 2>/dev/null) $(wildcard .dep/*)


# Listing of phony targets.
.PHONY : all begin finish end sizebefore sizeafter gccversion \
build elf hex eep lss sym coff extcoff \
clean clean_list program debug gdb-config
Her ist auch nochmal F_CPU festgelegt.

Sternthaler
18.07.2007, 02:47
Hallo Bääääär,
im Moment kann ich nur feststellen, dass bei mir auch nichts geht.
(Es wird überhaupt nichts übertragen. Noch nicht einmal ein Buchstabe.)
Folgendes habe ich bis jetzt aber schon gefunden:

Makefile:
- MCU = atmega8 und nicht atmega32
- F_CPU ist beim Asuro nicht 16000000, sondern nur 8000000
- Dieses Makefile erzeugt einige, mir unverständliche, warnings

main.c
- Im bei dir fehlenden Init() wird das Interuptsystem in der CPU mit sei(); erst gestartet. Kann hier aber sein, das es nicht notwendig ist.
- Im bei dir fehlenden Init() wird die Taktfrequence für den IR-Baustein gesetzt. Das fehlt bei dir.
- Laut Band II, darf die Sendegeschwindigkeit nicht größer als 2400 Baud sein
- Die Anzahl zu sendender Zeichen ist 13 und nicht 14 (\n und \r sind jeweils EIN Zeichen)
- Am Ende fehlt ein "while(1);" vor dem return

serial.h
- "#define cBlockung 1" soll bestimmt cBlocking heißen

serial.c
- Es fehlt ein "#include <avr/signal.h>"
- In "SIGNAL (SIG_USART_RECV)"
--- " - 1 " fehlt im if
- In "SIGNAL (SIG_USART_DATA)"
--- "if (WritePointer0 > cWrite...." muß < haben
--- //printf(WriteBuffer[WritePointer0++]); Ist zum Glück auskommentiert.
--- Du würdest beim ausführen der Zeile auf alle Fälle den Zeiger WritePointer0
--- mit dem da angehängten ++ um eine Stelle weiterzählen lassen.
--- Das Zeug in einer Klammer () bei Funktionsaufrufen wird ausgeführt!

Getestet habe ich auch die Variante, dass alles in einer Datei (test.c) steht und dann so wie im Band II laufen sollte. Geht bei mir aber aktuell auch nicht. Jetzt muss ich aber erst mal Schluß machen.

P.S.: Klasse, dass du noch an's Makefile gedacht hast.

Bääääär
18.07.2007, 08:54
- In "SIGNAL (SIG_USART_DATA)"
--- "if (WritePointer0 > cWrite...." muß < haben Und das war der Fehler. Er hat nie das Ende des Strings erreichen können, deswegen kam auch unendlich mal ein und dasselbe Zeichen. Ich hasse Tippfehler!

Es ist schon richtig, ich habe her auch keinen Asuro sondern einen Atmega32 mit 16Mhz. Soweit stimmt das schon.
Das Makefile habe ich mit MFile gemacht. Sollte eigentlich gehen.

--- //printf(WriteBuffer[WritePointer0++]); Ist zum Glück auskommentiert.
--- Du würdest beim ausführen der Zeile auf alle Fälle den Zeiger WritePointer0
--- mit dem da angehängten ++ um eine Stelle weiterzählen lassen.
--- Das Zeug in einer Klammer () bei Funktionsaufrufen wird ausgeführt!
Ja, das war nur ein versuch mit einer anderen Funktion, um zu testen, wo der Fehler liegt, Sorry, habe ich nur vergessen zu löschen.

- Am Ende fehlt ein "while(1);" vor dem return
Wohl war, das mach ich schnell noch.

Allerdings kommt auch bei mir nix mehr an. Aber der Cursor im HyperTerminal blinkt heftig. Also wrd irgendwas empfangen, nur was?

Vielen Dank,
Bääääär

Bääääär
18.07.2007, 14:49
Oki, senden geht jetzt ohne Probleme. (es lag wohl daran, dass ich nur einmal gesendet habe (im programm) und das senden war schon vorbei, als ich das HyperTerminal aufgemacht hatte...). Aber empfangen geht noch nicht. Hier nochmal der ganze Code:
Die serial.h bleibt gleich.

serial.c:

/////////////////////////////////////////////////////////////////////
// Arios: Serial Interface functions //
/////////////////////////////////////////////////////////////////////
// Author: Johannes Neumann //
// Date of completion: **.**.**** //
/////////////////////////////////////////////////////////////////////


// Defines //////////////////////////////////////////////////////////

#include <avr/interrupt.h>
#include <avr/io.h>

// Variables ////////////////////////////////////////////////////////

volatile unsigned int TXComplete;
volatile unsigned int WritePointer0 = 0, WritePointer1 = 0;
volatile unsigned int ReadPointer0 = 0, ReadPointer1 = 0;
volatile unsigned char ReadBuffer[cReadBufferSize];
volatile unsigned char WriteBuffer[cWriteBufferSize];

// Init /////////////////////////////////////////////////////////////
void RS232_init(long unsigned int baudrate) {
UCSRA = 0x00;
UCSRB = (1 << RXCIE) | (1 << RXEN);
UCSRC = (1 << UCSZ1) | (1 << UCSZ0) | (1 << URSEL);
UBRRH = (((F_CPU/baudrate) >> 4) - 1) >> 8;
UBRRL = (((F_CPU/baudrate) >> 4) - 1) & 0xFF;
TXComplete = cTXComplete;
}


// Send /////////////////////////////////////////////////////////////
int RS232_send(char *c, int length, int blocking) {
int i=0;
for (i=0; i < length; i++) {
if ((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2)) {
if (blocking) {
while((cWriteBufferSize + WritePointer1 - WritePointer0) % cWriteBufferSize >
(cWriteBufferSize - 2));
}
else return i;
}
TXComplete = cTXNotComplete;
asm("cli");
WriteBuffer[WritePointer1++] = c[i];
if (WritePointer1 > cWriteBufferSize - 1) WritePointer1 = 0;
asm("sei");
UCSRB = (1<<TXEN) | (1<<UDRIE);
}
return i;
}


// Receive //////////////////////////////////////////////////////////
int RS232_receive(char *c, int length, int blocking) {
int i;
TXComplete = cTXNotComplete;
for (i=0; i<length; i++) {
if (ReadPointer0 == ReadPointer1) {
if (blocking) while(ReadPointer0 == ReadPointer1);
else return i;
}
c[i] = ReadBuffer[ReadPointer1++];
if (ReadPointer1 > cReadBufferSize - 1) ReadPointer1 = 0;
}
return length;
}


// Complete? ////////////////////////////////////////////////////////
int RS232_WritingComplete(void) {
return TXComplete;
}


// Count of Bytes in ReadBuffer /////////////////////////////////////
int RS232_GetBytesInReadBuffer(void) {
return (cReadBufferSize + ReadPointer1-ReadPointer0) % cReadBufferSize;
}


// Count of Bytes in WriteBuffer ////////////////////////////////////
int RS232_GetBytesInWriteBuffer(void) {
return (cWriteBufferSize + WritePointer1-WritePointer0) % cWriteBufferSize;
}


// Return WriteBufferSize ///////////////////////////////////////////
int RS232_GetWriteBufferSize(void) {
return cWriteBufferSize;
}


// Return ReadBufferSize ////////////////////////////////////////////
int RS232_GetReadBufferSize(void) {
return cReadBufferSize;
}


// Return if ReadBuffer ist Empty ///////////////////////////////////
int RS232_ReadBufferClear(void) {

}


// Return if WriteBuffer ist Empty //////////////////////////////////
int RS232_WriteBufferClear(void) {

}

// Interrupt for Reading ////////////////////////////////////////////
SIGNAL (SIG_USART_RECV) {
ReadBuffer[ReadPointer0++] = UDR;
if (ReadPointer0 > cReadBufferSize - 1) ReadPointer0 = 0;
}


// Interrupt for writing Data into UDR //////////////////////////////
SIGNAL (SIG_USART_DATA) {
UDR = WriteBuffer[WritePointer0++];
if (WritePointer0 > cWriteBufferSize - 1) WritePointer0 = 0;
if (WritePointer0 == WritePointer1) UCSRB = (1<<TXEN) | (1<<TXCIE);
}


// Interrupt for setting Complete-Flag //////////////////////////////
SIGNAL (SIG_USART_TRANS) {
UCSRB = (1<<RXCIE) | (1<<RXEN);
TXComplete = cTXComplete;
}

Mein Proggi:
#include <Arios\serial.h>
#include <stdio.h>

int main (void) {
char c[1]= "n";
RS232_init(9600);
while(1) {
RS232_receive(c, 1, cBlocking);
RS232_send("You typed: ", 11, cBlocking);
RS232_send(c, 1, cBlocking);
RS232_send("\n\r", 2, cBlocking);
}
return 0;
}


Nur damit erstmal alles hier oben ist, so wie es momentan funktioniert (und nicht funktioniert)

Bääääär

Sternthaler
24.07.2007, 01:56
Hallo Bääääär,
bei mir geht das Empfangen auch nicht. (Umgestellt auf Asuro 2400 Baud, und includes)
Ich kann aber keine weiteren Fehler entdecken.
Für Heute gebe ich auf.

Bääääär
05.08.2007, 08:01
Hmm. Immerhin sagt mir das, dass der Fehler nicht im Aufbau meiner Schaltung liegt. Das ist doch schonmal erfreulich.