schurm2
20.09.2006, 17:23
Hallo,
Dieser angekündigte Beitrag kommt später als ich dachte, bin halt kein Genie wie einige Personen im Forum die nur so sprudeln mit Beiträgen über Roboter, Patente, Ethik, Psychologie u.s.w.
Nun zur Sache: Die Intellegenz des motivierten autonomen Roboters ist zugleich sehr groß und sehr klein, je nachdem welche Meßlatte man anlegt.
I. Für eine Maschine ist die Intelligenz des Roboters sehr groß weil folgende Grundsteine der Intelligenz enthält:
1. Abstrakte Objekt- und Situationsmodelle in der Wissensbasis und deren intelligente Aktualisierung
Die Wissensbasis ist so strukturiert daß jedes Objekt- oder Situationsmodell ein Knoten im Baum ähnlichem Graph ist. Die Nachfolgeknoten eines Objektmodell Knotens sind mehr konkrete (weniger abstrakte) Objektmodelle als das Objektmodell im Vorgänger Knoten; z. B. die Nachfolgeknoten des Objektmodells "Apfel" sind Modelle verschiedener Apfelsorten, wobei der "Apfel" Knoten (es ist das Modell der Klasse Äpfel) ist ein Nachfolgeknoten des Modells/Knotens "Früchte" (es ist das Modell für Früchte). Ein Objektmodell hat alle Eigenschaften des Vorgänger Knotens/Objektmodells. Dies ermöglicht sehr abstrakte Objektmodelle in der Wissensbasis zu haben. Abstrakte Objektmodelle sind einer der Grundsteine der Intellegenz, weil sie dem Roboter ermöglichen, bei Wahrnehmung, ein unbekanntes Objekt zu erkennen/klassifizieren als ein Objekt einer Klasse von Objekten, d.h. als Fall eines abstrakten Objektmodells. In dieser Weise erkennt/klassifiziert der Roboter intelligent vorher nicht bekannte Objekte.
Im Falle eines neuen Objektes dessen Modell nicht in der Wissensbasis ist, kann der Roboter das Modell für dieses Objekt bilden (er kann zusätzliche Aktivitäten ausführen um weitere Eigenschaften des Objektes zu erkennen) und dieses Modell in richtiger Stelle in die baumartige Wissensbasis eintragen. In dieser Weise erweitert der Roboter intelligent seine Wissensbasis über seine Umgebung.
In ähnlicher Weise können nicht bekannte Situationen klassifiziert (identifiziert als Fall eines abstrakten Situationsmodells) werden. Wenn also der Roboter eine unbekannte gefährliche Situation wahrnimmt, dann würde er wahrscheinlich diese Situation als Fall eines abstrakten Modells für gefährliche Situationen erkennen - und so, intelligent seine Umgebung erkennen.
Der Roboter kann auch verifizieren ob ein erkanntes konkretes Objekt alle/oder neue Eigenschaften hat, im Vergleich zu seinem Modell in der Wissensbasis, und dieses Objektmodell aktualisieren - er reagiert also intelligent auf Änderungen eines Objektes.
In gesagter Weise kann der Roboter seine Wissensbasis intelligent zu einer neuen Umgebung anpassen; z.B. wenn ein Haushaltsroboter seine Wohnung wechselt, oder wenn neue Möbel gekauft werden.
2. Bewertung von Objekten und Situationen mittels emotionaler Reizmuster
Jedem Objekt- und Situationsmodell kann ein Reizmuster in bezug auf ein Bedürfnis des Roboters zugeordnet werden. Dies ermöglicht die gegenwärtige Reizstärke eines wahrgenommenen Objektes oder Situation zu berechnen. Diese Reizstärke mißt wie gut (wenn sie positiv ist) oder wie schlecht (wenn sie negativ ist) und wie wichtig (wie groß der Absolutbetrag der Reizstärke ist) gegenwärtig das/die wahrgenommene Objekt/Situation ist - er kann also intelligent Objekte und Situationen in seiner Umgebung bewerten was ihm ermöglicht gegenwärtig unwichtige Objekte und Situationen zu ignorieren und nur die wichtigsten beachten und behandeln.
3. Aktivitätschema und die Motivation des Roboters es auszuführen
Ein Aktivitätschema des Roboters ist Beschreibung einer komplexen Aktivität des Roboters, z. B. das Aktivitätsschema für Zubereitung eines Mittagessens, das Aktivitätsschema für Reinigung eines Zimmers. Solch ein Aktivitätsschema kann Kontrollsubaktivitäten enthalten die dem Roboter ermöglichen andere Maschinen zu bedienen und kontrollieren - es ist eine intelligente Eigenschaft des Roboters.
Ein Aktivitätsschema hat Anfangs- und Zielsituationen. Der Roboter beginnt die Ausführung eines Aktivitätsschemas von einer Anfangssituation und ist motiviert eine Zielsituation des Aktivitätsschemas zu erreichen; wenn der Roboter keine Zielsituation erreicht dann ist die Ausführung mißlungen. Der Roboter führt also nur dann eine Aktivität aus wenn er in einer Anfangssituation dieser Aktivität ist.
Meistens ist jedoch der Roboter in mehreren Situationen die Anfangssituationen einiger Aktivitätsschemas sind. Um zu entscheiden welche Aktivität er gegenwärtig ausführen soll, wendet er eine Prozedur an die die gegenwärtige Motivation zur Ausführung einer Aktivität bestimmt. Diese Motivationsprozedur basiert auf in " 2. Bewertung von..." gesagten Reizstärken einiger Situationen (besonders der Anfangs-, Ziel- und anderen Endsituationen) des Aktivitätsschemas. Mittels dieser Motivation, mit Berücksichtigung der Zeit in der eine Aktivität ausgeführt werden soll, bestimmt der Roboter diese Aktivität auszuführen die gegenwärtig am wichtigsten ist. Der Roboter bestimmt also in intelligenter Weise welche Aktivität er gegenwärtig ausführen wird. Solches Entscheidungsproblem haben nur voll-autonome Roboter; nicht voll-autonome Roboter sind nicht mit solchem Problem konfrontiert.
4. Fokussierung der Aufmerksamkeit auf wichtigste Objekte und Situationen
Wenn der Roboter Objekte und Situationen in seiner Umgebung wahrnimmt, fokussiert er seine Aufmerksamkeit und Wahrnehmung auf diese Objekte und Situationen die gegenwärtig am wichtigsten sind, d.h. die große positive oder negative Reizstärke haben (sehe: "2. Bewertung..."). Dies ist einer der Grundsteine für intelligentes Verhalten des Roboters, weil er die wichtigsten Situationen behandelt und die unwichtigen ignoriert.
Ein Roboter der alle Situationen in seiner Umgebung mit der selben Aufmerksamkeit behandelt, kann nicht effektiv wirklich wichtige Situationen beobachten, was dazu führt daß er unwichtige Situationen behandelt und ignoriert wichtige - das ist ein sehr unintelligentes Verhalten.
Das Wahrnehmungssystem des Roboters speichert/merkt sich alle Objekte und Situationen in der gegenwärtig wahrgenommenen Umgebung, so daß, er z.B. weiß welche Objekte im Wohnzimmer sind wenn er von dort in die Küche gekommen ist. Solches Wissen ist notwendig um sich intelligent zu verhalten.
II. Im Vergleich zur menschlichen Intelligenz ist die Intelligenz des Roboters sehr klein weil:
i. Seine Umgebung (seine Welt) und sein Wissen (in der Wissensbasis) ist sehr beschränkt - reduziert auf die Aktivitäten die er ausführen soll.
ii. Der Robot ist nicht kreativ und grundsätzlich nicht fähig nicht triviale Denkprozesse auszuführen.
iii. Er ist nicht fähig eine normale natürliche Sprache zu benutzen; mehr auf http://mywebpage.netscape.com/alschurm1/page7.html
MFG
A.Schurmann/schurm2
Dieser angekündigte Beitrag kommt später als ich dachte, bin halt kein Genie wie einige Personen im Forum die nur so sprudeln mit Beiträgen über Roboter, Patente, Ethik, Psychologie u.s.w.
Nun zur Sache: Die Intellegenz des motivierten autonomen Roboters ist zugleich sehr groß und sehr klein, je nachdem welche Meßlatte man anlegt.
I. Für eine Maschine ist die Intelligenz des Roboters sehr groß weil folgende Grundsteine der Intelligenz enthält:
1. Abstrakte Objekt- und Situationsmodelle in der Wissensbasis und deren intelligente Aktualisierung
Die Wissensbasis ist so strukturiert daß jedes Objekt- oder Situationsmodell ein Knoten im Baum ähnlichem Graph ist. Die Nachfolgeknoten eines Objektmodell Knotens sind mehr konkrete (weniger abstrakte) Objektmodelle als das Objektmodell im Vorgänger Knoten; z. B. die Nachfolgeknoten des Objektmodells "Apfel" sind Modelle verschiedener Apfelsorten, wobei der "Apfel" Knoten (es ist das Modell der Klasse Äpfel) ist ein Nachfolgeknoten des Modells/Knotens "Früchte" (es ist das Modell für Früchte). Ein Objektmodell hat alle Eigenschaften des Vorgänger Knotens/Objektmodells. Dies ermöglicht sehr abstrakte Objektmodelle in der Wissensbasis zu haben. Abstrakte Objektmodelle sind einer der Grundsteine der Intellegenz, weil sie dem Roboter ermöglichen, bei Wahrnehmung, ein unbekanntes Objekt zu erkennen/klassifizieren als ein Objekt einer Klasse von Objekten, d.h. als Fall eines abstrakten Objektmodells. In dieser Weise erkennt/klassifiziert der Roboter intelligent vorher nicht bekannte Objekte.
Im Falle eines neuen Objektes dessen Modell nicht in der Wissensbasis ist, kann der Roboter das Modell für dieses Objekt bilden (er kann zusätzliche Aktivitäten ausführen um weitere Eigenschaften des Objektes zu erkennen) und dieses Modell in richtiger Stelle in die baumartige Wissensbasis eintragen. In dieser Weise erweitert der Roboter intelligent seine Wissensbasis über seine Umgebung.
In ähnlicher Weise können nicht bekannte Situationen klassifiziert (identifiziert als Fall eines abstrakten Situationsmodells) werden. Wenn also der Roboter eine unbekannte gefährliche Situation wahrnimmt, dann würde er wahrscheinlich diese Situation als Fall eines abstrakten Modells für gefährliche Situationen erkennen - und so, intelligent seine Umgebung erkennen.
Der Roboter kann auch verifizieren ob ein erkanntes konkretes Objekt alle/oder neue Eigenschaften hat, im Vergleich zu seinem Modell in der Wissensbasis, und dieses Objektmodell aktualisieren - er reagiert also intelligent auf Änderungen eines Objektes.
In gesagter Weise kann der Roboter seine Wissensbasis intelligent zu einer neuen Umgebung anpassen; z.B. wenn ein Haushaltsroboter seine Wohnung wechselt, oder wenn neue Möbel gekauft werden.
2. Bewertung von Objekten und Situationen mittels emotionaler Reizmuster
Jedem Objekt- und Situationsmodell kann ein Reizmuster in bezug auf ein Bedürfnis des Roboters zugeordnet werden. Dies ermöglicht die gegenwärtige Reizstärke eines wahrgenommenen Objektes oder Situation zu berechnen. Diese Reizstärke mißt wie gut (wenn sie positiv ist) oder wie schlecht (wenn sie negativ ist) und wie wichtig (wie groß der Absolutbetrag der Reizstärke ist) gegenwärtig das/die wahrgenommene Objekt/Situation ist - er kann also intelligent Objekte und Situationen in seiner Umgebung bewerten was ihm ermöglicht gegenwärtig unwichtige Objekte und Situationen zu ignorieren und nur die wichtigsten beachten und behandeln.
3. Aktivitätschema und die Motivation des Roboters es auszuführen
Ein Aktivitätschema des Roboters ist Beschreibung einer komplexen Aktivität des Roboters, z. B. das Aktivitätsschema für Zubereitung eines Mittagessens, das Aktivitätsschema für Reinigung eines Zimmers. Solch ein Aktivitätsschema kann Kontrollsubaktivitäten enthalten die dem Roboter ermöglichen andere Maschinen zu bedienen und kontrollieren - es ist eine intelligente Eigenschaft des Roboters.
Ein Aktivitätsschema hat Anfangs- und Zielsituationen. Der Roboter beginnt die Ausführung eines Aktivitätsschemas von einer Anfangssituation und ist motiviert eine Zielsituation des Aktivitätsschemas zu erreichen; wenn der Roboter keine Zielsituation erreicht dann ist die Ausführung mißlungen. Der Roboter führt also nur dann eine Aktivität aus wenn er in einer Anfangssituation dieser Aktivität ist.
Meistens ist jedoch der Roboter in mehreren Situationen die Anfangssituationen einiger Aktivitätsschemas sind. Um zu entscheiden welche Aktivität er gegenwärtig ausführen soll, wendet er eine Prozedur an die die gegenwärtige Motivation zur Ausführung einer Aktivität bestimmt. Diese Motivationsprozedur basiert auf in " 2. Bewertung von..." gesagten Reizstärken einiger Situationen (besonders der Anfangs-, Ziel- und anderen Endsituationen) des Aktivitätsschemas. Mittels dieser Motivation, mit Berücksichtigung der Zeit in der eine Aktivität ausgeführt werden soll, bestimmt der Roboter diese Aktivität auszuführen die gegenwärtig am wichtigsten ist. Der Roboter bestimmt also in intelligenter Weise welche Aktivität er gegenwärtig ausführen wird. Solches Entscheidungsproblem haben nur voll-autonome Roboter; nicht voll-autonome Roboter sind nicht mit solchem Problem konfrontiert.
4. Fokussierung der Aufmerksamkeit auf wichtigste Objekte und Situationen
Wenn der Roboter Objekte und Situationen in seiner Umgebung wahrnimmt, fokussiert er seine Aufmerksamkeit und Wahrnehmung auf diese Objekte und Situationen die gegenwärtig am wichtigsten sind, d.h. die große positive oder negative Reizstärke haben (sehe: "2. Bewertung..."). Dies ist einer der Grundsteine für intelligentes Verhalten des Roboters, weil er die wichtigsten Situationen behandelt und die unwichtigen ignoriert.
Ein Roboter der alle Situationen in seiner Umgebung mit der selben Aufmerksamkeit behandelt, kann nicht effektiv wirklich wichtige Situationen beobachten, was dazu führt daß er unwichtige Situationen behandelt und ignoriert wichtige - das ist ein sehr unintelligentes Verhalten.
Das Wahrnehmungssystem des Roboters speichert/merkt sich alle Objekte und Situationen in der gegenwärtig wahrgenommenen Umgebung, so daß, er z.B. weiß welche Objekte im Wohnzimmer sind wenn er von dort in die Küche gekommen ist. Solches Wissen ist notwendig um sich intelligent zu verhalten.
II. Im Vergleich zur menschlichen Intelligenz ist die Intelligenz des Roboters sehr klein weil:
i. Seine Umgebung (seine Welt) und sein Wissen (in der Wissensbasis) ist sehr beschränkt - reduziert auf die Aktivitäten die er ausführen soll.
ii. Der Robot ist nicht kreativ und grundsätzlich nicht fähig nicht triviale Denkprozesse auszuführen.
iii. Er ist nicht fähig eine normale natürliche Sprache zu benutzen; mehr auf http://mywebpage.netscape.com/alschurm1/page7.html
MFG
A.Schurmann/schurm2